pypsa.optimization.optimize.OptimizationAccessor.create_model#
- OptimizationAccessor.create_model(snapshots: Sequence | None = None, multi_investment_periods: bool = False, transmission_losses: int = 0, linearized_unit_commitment: bool = False, **kwargs: Any) Model #
Create a linopy.Model instance from a pypsa network.
The model is stored at n.model.
- Parameters:
n (pypsa.Network)
snapshots (list or index slice) – A list of snapshots to optimise, must be a subset of n.snapshots, defaults to n.snapshots
multi_investment_periods (bool, default False) – Whether to optimise as a single investment period or to optimize in multiple investment periods. Then, snapshots should be a
pd.MultiIndex
.transmission_losses (int, default 0)
linearized_unit_commitment (bool, default False) – Whether to optimise using the linearised unit commitment formulation or not.
**kwargs – Keyword arguments used by linopy.Model(), such as solver_dir or chunk.
- Return type:
linopy.model