Note
You can download this example as a Jupyter notebook or start it in interactive mode.
Multi Investment Optimization#
In the following, we show how PyPSA can deal with multi-investment optimization, also known as multi-horizon optimization.
Here, the total set of snapshots is divided into investment periods. For the model, this translates into multi-indexed snapshots with the first level being the investment period and the second level the according time steps. In each investment period new asset may be added to the system. On the other hand assets may only operate as long as allowed by their lifetime.
In contrast to the ordinary optimisation, the following concepts have to be taken into account.
investment_periods
-pypsa.Network
attribute. This is the set of periods which specify when new assets may be built. In the current implementation, these have to be the same as the first level values in thesnapshots
attribute.investment_period_weightings
-pypsa.Network
attribute. These specify the weighting of each period in the objective function.build_year
- general component attribute. A single asset may only be built when the build year is smaller or equal to the current investment period. For example, assets with a build year2029
are considered in the investment period2030
, but not in the period2025
.lifetime
- general component attribute. An asset is only considered in an investment period if present at the beginning of an investment period. For example, an asset with build year2029
and lifetime30
is considered in the investment period2055
but not in the period2060
.
In the following, we set up a three node network with generators, lines and storages and run a optimisation covering the time span from 2020 to 2050 and each decade is one investment period.
[1]:
import pypsa
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
ERROR 1: PROJ: proj_create_from_database: Open of /home/docs/checkouts/readthedocs.org/user_builds/pypsa/conda/latest/share/proj failed
We set up the network with investment periods and snapshots.
[2]:
n = pypsa.Network()
years = [2020, 2030, 2040, 2050]
freq = "24"
snapshots = pd.DatetimeIndex([])
for year in years:
period = pd.date_range(
start="{}-01-01 00:00".format(year),
freq="{}H".format(freq),
periods=8760 / float(freq),
)
snapshots = snapshots.append(period)
# convert to multiindex and assign to network
n.snapshots = pd.MultiIndex.from_arrays([snapshots.year, snapshots])
n.investment_periods = years
n.snapshot_weightings
[2]:
objective | stores | generators | ||
---|---|---|---|---|
period | timestep | |||
2020 | 2020-01-01 | 1.0 | 1.0 | 1.0 |
2020-01-02 | 1.0 | 1.0 | 1.0 | |
2020-01-03 | 1.0 | 1.0 | 1.0 | |
2020-01-04 | 1.0 | 1.0 | 1.0 | |
2020-01-05 | 1.0 | 1.0 | 1.0 | |
... | ... | ... | ... | ... |
2050 | 2050-12-27 | 1.0 | 1.0 | 1.0 |
2050-12-28 | 1.0 | 1.0 | 1.0 | |
2050-12-29 | 1.0 | 1.0 | 1.0 | |
2050-12-30 | 1.0 | 1.0 | 1.0 | |
2050-12-31 | 1.0 | 1.0 | 1.0 |
1460 rows × 3 columns
[3]:
n.investment_periods
[3]:
Index([2020, 2030, 2040, 2050], dtype='int64')
Set the years and objective weighting per investment period. For the objective weighting, we consider a discount rate defined by
where \(r\) is the discount rate. For each period we sum up all discounts rates of the corresponding years which gives us the effective objective weighting.
[4]:
n.investment_period_weightings["years"] = list(np.diff(years)) + [10]
r = 0.01
T = 0
for period, nyears in n.investment_period_weightings.years.items():
discounts = [(1 / (1 + r) ** t) for t in range(T, T + nyears)]
n.investment_period_weightings.at[period, "objective"] = sum(discounts)
T += nyears
n.investment_period_weightings
[4]:
objective | years | |
---|---|---|
2020 | 9.566018 | 10 |
2030 | 8.659991 | 10 |
2040 | 7.839777 | 10 |
2050 | 7.097248 | 10 |
Add the components
[5]:
for i in range(3):
n.add("Bus", "bus {}".format(i))
# add three lines in a ring
n.add(
"Line",
"line 0->1",
bus0="bus 0",
bus1="bus 1",
)
n.add(
"Line",
"line 1->2",
bus0="bus 1",
bus1="bus 2",
capital_cost=10,
build_year=2030,
)
n.add(
"Line",
"line 2->0",
bus0="bus 2",
bus1="bus 0",
)
n.lines["x"] = 0.0001
n.lines["s_nom_extendable"] = True
[6]:
n.lines
[6]:
attribute | bus0 | bus1 | type | x | r | g | b | s_nom | s_nom_mod | s_nom_extendable | ... | v_ang_max | sub_network | x_pu | r_pu | g_pu | b_pu | x_pu_eff | r_pu_eff | s_nom_opt | n_mod |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Line | |||||||||||||||||||||
line 0->1 | bus 0 | bus 1 | 0.0001 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | True | ... | inf | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | ||
line 1->2 | bus 1 | bus 2 | 0.0001 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | True | ... | inf | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | ||
line 2->0 | bus 2 | bus 0 | 0.0001 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | True | ... | inf | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 |
3 rows × 31 columns
[7]:
# add some generators
p_nom_max = pd.Series(
(np.random.uniform() for sn in range(len(n.snapshots))),
index=n.snapshots,
name="generator ext 2020",
)
# renewable (can operate 2020, 2030)
n.add(
"Generator",
"generator ext 0 2020",
bus="bus 0",
p_nom=50,
build_year=2020,
lifetime=20,
marginal_cost=2,
capital_cost=1,
p_max_pu=p_nom_max,
carrier="solar",
p_nom_extendable=True,
)
# can operate 2040, 2050
n.add(
"Generator",
"generator ext 0 2040",
bus="bus 0",
p_nom=50,
build_year=2040,
lifetime=11,
marginal_cost=25,
capital_cost=10,
carrier="OCGT",
p_nom_extendable=True,
)
# can operate in 2040
n.add(
"Generator",
"generator fix 1 2040",
bus="bus 1",
p_nom=50,
build_year=2040,
lifetime=10,
carrier="CCGT",
marginal_cost=20,
capital_cost=1,
)
n.generators
[7]:
attribute | bus | control | type | p_nom | p_nom_mod | p_nom_extendable | p_nom_min | p_nom_max | p_min_pu | p_max_pu | ... | min_down_time | up_time_before | down_time_before | ramp_limit_up | ramp_limit_down | ramp_limit_start_up | ramp_limit_shut_down | weight | p_nom_opt | n_mod |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Generator | |||||||||||||||||||||
generator ext 0 2020 | bus 0 | PQ | 50.0 | 0.0 | True | 0.0 | inf | 0.0 | 1.0 | ... | 0 | 1 | 0 | NaN | NaN | 1.0 | 1.0 | 1.0 | 0.0 | 0 | |
generator ext 0 2040 | bus 0 | PQ | 50.0 | 0.0 | True | 0.0 | inf | 0.0 | 1.0 | ... | 0 | 1 | 0 | NaN | NaN | 1.0 | 1.0 | 1.0 | 0.0 | 0 | |
generator fix 1 2040 | bus 1 | PQ | 50.0 | 0.0 | False | 0.0 | inf | 0.0 | 1.0 | ... | 0 | 1 | 0 | NaN | NaN | 1.0 | 1.0 | 1.0 | 0.0 | 0 |
3 rows × 35 columns
[8]:
n.add(
"StorageUnit",
"storageunit non-cyclic 2030",
bus="bus 2",
p_nom=0,
capital_cost=2,
build_year=2030,
lifetime=21,
cyclic_state_of_charge=False,
p_nom_extendable=False,
)
n.add(
"StorageUnit",
"storageunit periodic 2020",
bus="bus 2",
p_nom=0,
capital_cost=1,
build_year=2020,
lifetime=21,
cyclic_state_of_charge=True,
cyclic_state_of_charge_per_period=True,
p_nom_extendable=True,
)
n.storage_units
[8]:
attribute | bus | control | type | p_nom | p_nom_mod | p_nom_extendable | p_nom_min | p_nom_max | p_min_pu | p_max_pu | ... | state_of_charge_set | cyclic_state_of_charge | cyclic_state_of_charge_per_period | max_hours | efficiency_store | efficiency_dispatch | standing_loss | inflow | p_nom_opt | n_mod |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
StorageUnit | |||||||||||||||||||||
storageunit non-cyclic 2030 | bus 2 | PQ | 0.0 | 0.0 | False | 0.0 | inf | -1.0 | 1.0 | ... | NaN | False | True | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0 | |
storageunit periodic 2020 | bus 2 | PQ | 0.0 | 0.0 | True | 0.0 | inf | -1.0 | 1.0 | ... | NaN | True | True | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0 |
2 rows × 31 columns
Add the load
[9]:
load_var = pd.Series(
100 * np.random.rand(len(n.snapshots)), index=n.snapshots, name="load"
)
n.add("Load", "load 2", bus="bus 2", p_set=load_var)
load_fix = pd.Series(75, index=n.snapshots, name="load")
n.add("Load", "load 1", bus="bus 1", p_set=load_fix)
Run the optimization
[10]:
n.loads_t.p_set
[10]:
Load | load 2 | load 1 | |
---|---|---|---|
period | timestep | ||
2020 | 2020-01-01 | 89.266322 | 75.0 |
2020-01-02 | 40.946944 | 75.0 | |
2020-01-03 | 35.212328 | 75.0 | |
2020-01-04 | 86.427537 | 75.0 | |
2020-01-05 | 98.300985 | 75.0 | |
... | ... | ... | ... |
2050 | 2050-12-27 | 61.030109 | 75.0 |
2050-12-28 | 41.065157 | 75.0 | |
2050-12-29 | 29.673343 | 75.0 | |
2050-12-30 | 78.393916 | 75.0 | |
2050-12-31 | 72.717002 | 75.0 |
1460 rows × 2 columns
[11]:
n.optimize(multi_investment_periods=True)
WARNING:pypsa.components:The following lines have zero r, which could break the linear load flow:
Index(['line 0->1', 'line 1->2', 'line 2->0'], dtype='object', name='Line')
WARNING:pypsa.components:The following lines have zero r, which could break the linear load flow:
Index(['line 0->1', 'line 1->2', 'line 2->0'], dtype='object', name='Line')
INFO:linopy.model: Solve problem using Glpk solver
INFO:linopy.io:Writing objective.
Writing constraints.: 100%|██████████| 27/27 [00:00<00:00, 100.35it/s]
Writing continuous variables.: 100%|██████████| 10/10 [00:00<00:00, 262.90it/s]
INFO:linopy.io: Writing time: 0.32s
GLPSOL--GLPK LP/MIP Solver 5.0
Parameter(s) specified in the command line:
--lp /tmp/linopy-problem-25heq_8l.lp --output /tmp/linopy-solve-wrl712ku.sol
Reading problem data from '/tmp/linopy-problem-25heq_8l.lp'...
35776 rows, 12417 columns, 67163 non-zeros
188727 lines were read
GLPK Simplex Optimizer 5.0
35776 rows, 12417 columns, 67163 non-zeros
Preprocessing...
18250 rows, 8401 columns, 42705 non-zeros
Scaling...
A: min|aij| = 3.411e-04 max|aij| = 1.000e+01 ratio = 2.932e+04
GM: min|aij| = 4.416e-01 max|aij| = 2.264e+00 ratio = 5.128e+00
EQ: min|aij| = 1.968e-01 max|aij| = 1.000e+00 ratio = 5.082e+00
Constructing initial basis...
Size of triangular part is 17882
0: obj = -5.236759264e+05 inf = 2.411e+07 (5475)
Perturbing LP to avoid stalling [3787]...
6071: obj = 1.833623595e+07 inf = 7.216e-08 (0) 58
Removing LP perturbation [6609]...
* 6609: obj = 1.799983976e+07 inf = 1.649e-12 (0) 5
OPTIMAL LP SOLUTION FOUND
Time used: 4.3 secs
Memory used: 27.0 Mb (28344637 bytes)
Writing basic solution to '/tmp/linopy-solve-wrl712ku.sol'...
INFO:linopy.constants: Optimization successful:
Status: ok
Termination condition: optimal
Solution: 12417 primals, 35776 duals
Objective: 1.80e+07
Solver model: not available
Solver message: optimal
INFO:pypsa.optimization.optimize:The shadow-prices of the constraints Generator-fix-p-lower, Generator-fix-p-upper, Generator-ext-p-lower, Generator-ext-p-upper, Line-ext-s-lower, Line-ext-s-upper, StorageUnit-fix-p_dispatch-lower, StorageUnit-fix-p_dispatch-upper, StorageUnit-ext-p_dispatch-lower, StorageUnit-ext-p_dispatch-upper, StorageUnit-fix-p_store-lower, StorageUnit-fix-p_store-upper, StorageUnit-ext-p_store-lower, StorageUnit-ext-p_store-upper, StorageUnit-fix-state_of_charge-lower, StorageUnit-fix-state_of_charge-upper, StorageUnit-ext-state_of_charge-lower, StorageUnit-ext-state_of_charge-upper, Kirchhoff-Voltage-Law, StorageUnit-energy_balance were not assigned to the network.
[11]:
('ok', 'optimal')
[12]:
c = "Generator"
df = pd.concat(
{
period: n.get_active_assets(c, period) * n.df(c).p_nom_opt
for period in n.investment_periods
},
axis=1,
)
df.T.plot.bar(
stacked=True,
edgecolor="white",
width=1,
ylabel="Capacity",
xlabel="Investment Period",
rot=0,
figsize=(10, 5),
)
plt.tight_layout()

[13]:
df = n.generators_t.p.sum(axis=0).T
df.T.plot.bar(
stacked=True,
edgecolor="white",
width=1,
ylabel="Generation",
xlabel="Investment Period",
rot=0,
figsize=(10, 5),
)
[13]:
<Axes: xlabel='Investment Period', ylabel='Generation'>
