Non-linear power flow after LOPF

Note

You can download this example as a Jupyter notebook or start it in interactive mode.

Non-linear power flow after LOPF#

In this example, the dispatch of generators is optimised using the linear OPF, then a non-linear power flow is run on the resulting dispatch.

Data sources#

Grid: based on SciGRID Version 0.2 which is based on OpenStreetMap.

Load size and location: based on Landkreise (NUTS 3) GDP and population.

Load time series: from ENTSO-E hourly data, scaled up uniformly by factor 1.12 (a simplification of the methodology in Schumacher, Hirth (2015)).

Conventional power plant capacities and locations: BNetzA list.

Wind and solar capacities and locations: EEG Stammdaten, based on http://www.energymap.info/download.html, which represents capacities at the end of 2014. Units without PLZ are removed.

Wind and solar time series: REatlas, Andresen et al, “Validation of Danish wind time series from a new global renewable energy atlas for energy system analysis,” Energy 93 (2015) 1074 - 1088.

Where SciGRID nodes have been split into 220kV and 380kV substations, all load and generation is attached to the 220kV substation.

Warnings#

The data behind the notebook is no longer supported. See PyPSA/pypsa-eur for a newer model that covers the whole of Europe.

This dataset is ONLY intended to demonstrate the capabilities of PyPSA and is NOT (yet) accurate enough to be used for research purposes.

Known problems include:

  1. Rough approximations have been made for missing grid data, e.g. 220kV-380kV transformers and connections between close sub-stations missing from OSM.

  2. There appears to be some unexpected congestion in parts of the network, which may mean for example that the load attachment method (by Voronoi cell overlap with Landkreise) isn’t working, particularly in regions with a high density of substations.

  3. Attaching power plants to the nearest high voltage substation may not reflect reality.

  4. There is no proper n-1 security in the calculations - this can either be simulated with a blanket e.g. 70% reduction in thermal limits (as done here) or a proper security constrained OPF (see e.g. http://pypsa.readthedocs.io/en/latest/examples/scigrid-sclopf.html).

  5. The borders and neighbouring countries are not represented.

  6. Hydroelectric power stations are not modelled accurately.

  7. The marginal costs are illustrative, not accurate.

  8. Only the first day of 2011 is in the github dataset, which is not representative. The full year of 2011 can be downloaded at http://www.pypsa.org/examples/scigrid-with-load-gen-trafos-2011.zip.

  9. The ENTSO-E total load for Germany may not be scaled correctly; it is scaled up uniformly by factor 1.12 (a simplification of the methodology in Schumacher, Hirth (2015), which suggests monthly factors).

  10. Biomass from the EEG Stammdaten are not read in at the moment.

  11. Power plant start up costs, ramping limits/costs, minimum loading rates are not considered.

[1]:
import cartopy.crs as ccrs
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

import pypsa
[2]:
network = pypsa.examples.scigrid_de(from_master=True)
WARNING:pypsa.io:Importing network from PyPSA version v0.17.1 while current version is v0.31.0. Read the release notes at https://pypsa.readthedocs.io/en/latest/release_notes.html to prepare your network for import.
INFO:pypsa.io:Imported network scigrid-de.nc has buses, generators, lines, loads, storage_units, transformers

Plot the distribution of the load and of generating tech

[3]:
fig, ax = plt.subplots(
    1, 1, subplot_kw={"projection": ccrs.EqualEarth()}, figsize=(8, 8)
)

load_distribution = (
    network.loads_t.p_set.loc[network.snapshots[0]].groupby(network.loads.bus).sum()
)
network.plot(bus_sizes=1e-5 * load_distribution, ax=ax, title="Load distribution");
/home/docs/checkouts/readthedocs.org/user_builds/pypsa/envs/latest/lib/python3.12/site-packages/cartopy/mpl/feature_artist.py:144: UserWarning: facecolor will have no effect as it has been defined as "never".
  warnings.warn('facecolor will have no effect as it has been '
../_images/examples_scigrid-lopf-then-pf_4_1.png
[4]:
network.generators.groupby("carrier")["p_nom"].sum()
[4]:
carrier
Brown Coal       20879.500000
Gas              23913.130000
Geothermal          31.700000
Hard Coal        25312.600000
Multiple           152.700000
Nuclear          12068.000000
Oil               2710.200000
Other             3027.800000
Run of River      3999.100000
Solar            37041.524779
Storage Hydro     1445.000000
Waste             1645.900000
Wind Offshore     2973.500000
Wind Onshore     37339.895329
Name: p_nom, dtype: float64
[5]:
network.storage_units.groupby("carrier")["p_nom"].sum()
[5]:
carrier
Pumped Hydro    9179.5
Name: p_nom, dtype: float64
[6]:
techs = ["Gas", "Brown Coal", "Hard Coal", "Wind Offshore", "Wind Onshore", "Solar"]

n_graphs = len(techs)
n_cols = 3
if n_graphs % n_cols == 0:
    n_rows = n_graphs // n_cols
else:
    n_rows = n_graphs // n_cols + 1


fig, axes = plt.subplots(
    nrows=n_rows, ncols=n_cols, subplot_kw={"projection": ccrs.EqualEarth()}
)
size = 6
fig.set_size_inches(size * n_cols, size * n_rows)

for i, tech in enumerate(techs):
    i_row = i // n_cols
    i_col = i % n_cols

    ax = axes[i_row, i_col]
    gens = network.generators[network.generators.carrier == tech]
    gen_distribution = (
        gens.groupby("bus").sum()["p_nom"].reindex(network.buses.index, fill_value=0.0)
    )
    network.plot(ax=ax, bus_sizes=2e-5 * gen_distribution)
    ax.set_title(tech)
fig.tight_layout()
/home/docs/checkouts/readthedocs.org/user_builds/pypsa/envs/latest/lib/python3.12/site-packages/cartopy/mpl/feature_artist.py:144: UserWarning: facecolor will have no effect as it has been defined as "never".
  warnings.warn('facecolor will have no effect as it has been '
/home/docs/checkouts/readthedocs.org/user_builds/pypsa/envs/latest/lib/python3.12/site-packages/cartopy/mpl/feature_artist.py:144: UserWarning: facecolor will have no effect as it has been defined as "never".
  warnings.warn('facecolor will have no effect as it has been '
/home/docs/checkouts/readthedocs.org/user_builds/pypsa/envs/latest/lib/python3.12/site-packages/cartopy/mpl/feature_artist.py:144: UserWarning: facecolor will have no effect as it has been defined as "never".
  warnings.warn('facecolor will have no effect as it has been '
/home/docs/checkouts/readthedocs.org/user_builds/pypsa/envs/latest/lib/python3.12/site-packages/cartopy/mpl/feature_artist.py:144: UserWarning: facecolor will have no effect as it has been defined as "never".
  warnings.warn('facecolor will have no effect as it has been '
/home/docs/checkouts/readthedocs.org/user_builds/pypsa/envs/latest/lib/python3.12/site-packages/cartopy/mpl/feature_artist.py:144: UserWarning: facecolor will have no effect as it has been defined as "never".
  warnings.warn('facecolor will have no effect as it has been '
/home/docs/checkouts/readthedocs.org/user_builds/pypsa/envs/latest/lib/python3.12/site-packages/cartopy/mpl/feature_artist.py:144: UserWarning: facecolor will have no effect as it has been defined as "never".
  warnings.warn('facecolor will have no effect as it has been '
../_images/examples_scigrid-lopf-then-pf_7_1.png

Run Linear Optimal Power Flow on the first day of 2011.

To approximate n-1 security and allow room for reactive power flows, don’t allow any line to be loaded above 70% of their thermal rating

[7]:
contingency_factor = 0.7
network.lines.s_max_pu = contingency_factor

There are some infeasibilities without small extensions

[8]:
network.lines.loc[["316", "527", "602"], "s_nom"] = 1715

We performing a linear OPF for one day, 4 snapshots at a time.

[9]:
group_size = 4
network.storage_units.state_of_charge_initial = 0.0

for i in range(int(24 / group_size)):
    # set the initial state of charge based on previous round
    if i:
        network.storage_units.state_of_charge_initial = (
            network.storage_units_t.state_of_charge.loc[
                network.snapshots[group_size * i - 1]
            ]
        )
    network.optimize(
        network.snapshots[group_size * i : group_size * i + group_size],
    )
WARNING:pypsa.consistency:The following transformers have zero r, which could break the linear load flow:
Index(['2', '5', '10', '12', '13', '15', '18', '20', '22', '24', '26', '30',
       '32', '37', '42', '46', '52', '56', '61', '68', '69', '74', '78', '86',
       '87', '94', '95', '96', '99', '100', '104', '105', '106', '107', '117',
       '120', '123', '124', '125', '128', '129', '138', '143', '156', '157',
       '159', '160', '165', '184', '191', '195', '201', '220', '231', '232',
       '233', '236', '247', '248', '250', '251', '252', '261', '263', '264',
       '267', '272', '279', '281', '282', '292', '303', '307', '308', '312',
       '315', '317', '322', '332', '334', '336', '338', '351', '353', '360',
       '362', '382', '384', '385', '391', '403', '404', '413', '421', '450',
       '458'],
      dtype='object', name='Transformer')
WARNING:pypsa.consistency:The following transformers have zero r, which could break the linear load flow:
Index(['2', '5', '10', '12', '13', '15', '18', '20', '22', '24', '26', '30',
       '32', '37', '42', '46', '52', '56', '61', '68', '69', '74', '78', '86',
       '87', '94', '95', '96', '99', '100', '104', '105', '106', '107', '117',
       '120', '123', '124', '125', '128', '129', '138', '143', '156', '157',
       '159', '160', '165', '184', '191', '195', '201', '220', '231', '232',
       '233', '236', '247', '248', '250', '251', '252', '261', '263', '264',
       '267', '272', '279', '281', '282', '292', '303', '307', '308', '312',
       '315', '317', '322', '332', '334', '336', '338', '351', '353', '360',
       '362', '382', '384', '385', '391', '403', '404', '413', '421', '450',
       '458'],
      dtype='object', name='Transformer')
/home/docs/checkouts/readthedocs.org/user_builds/pypsa/envs/latest/lib/python3.12/site-packages/linopy/common.py:147: UserWarning: coords for dimension(s) ['Generator'] is not aligned with the pandas object. Previously, the indexes of the pandas were ignored and overwritten in these cases. Now, the pandas object's coordinates are taken considered for alignment.
  warn(
INFO:linopy.model: Solve problem using Highs solver
INFO:linopy.io: Writing time: 0.24s
INFO:linopy.solvers:Log file at /tmp/highs.log
Running HiGHS 1.7.2 (git hash: 184e327): Copyright (c) 2024 HiGHS under MIT licence terms
Coefficient ranges:
INFO:linopy.constants: Optimization successful:
Status: ok
Termination condition: optimal
Solution: 9940 primals, 25251 duals
Objective: 1.45e+06
Solver model: available
Solver message: optimal

INFO:pypsa.optimization.optimize:The shadow-prices of the constraints Generator-fix-p-lower, Generator-fix-p-upper, Line-fix-s-lower, Line-fix-s-upper, Transformer-fix-s-lower, Transformer-fix-s-upper, StorageUnit-fix-p_dispatch-lower, StorageUnit-fix-p_dispatch-upper, StorageUnit-fix-p_store-lower, StorageUnit-fix-p_store-upper, StorageUnit-fix-state_of_charge-lower, StorageUnit-fix-state_of_charge-upper, Kirchhoff-Voltage-Law, StorageUnit-energy_balance were not assigned to the network.
  Matrix [1e-02, 2e+02]
  Cost   [3e+00, 1e+02]
  Bound  [0e+00, 0e+00]
  RHS    [7e-08, 6e+03]
Presolving model
3039 rows, 6674 cols, 18332 nonzeros  0s
2287 rows, 5906 cols, 17300 nonzeros  0s
2084 rows, 5108 cols, 16405 nonzeros  0s
Presolve : Reductions: rows 2084(-23167); columns 5108(-4832); elements 16405(-33193)
Solving the presolved LP
Using EKK dual simplex solver - serial
  Iteration        Objective     Infeasibilities num(sum)
          0     0.0000000000e+00 Ph1: 0(0) 0s
       2672     1.4496872501e+06 Pr: 0(0); Du: 0(2.22981e-14) 0s
       2672     1.4496872501e+06 Pr: 0(0); Du: 0(2.22981e-14) 0s
Solving the original LP from the solution after postsolve
Model   status      : Optimal
Simplex   iterations: 2672
Objective value     :  1.4496872501e+06
HiGHS run time      :          0.31
Writing the solution to /tmp/linopy-solve-0spyks1z.sol
WARNING:pypsa.consistency:The following transformers have zero r, which could break the linear load flow:
Index(['2', '5', '10', '12', '13', '15', '18', '20', '22', '24', '26', '30',
       '32', '37', '42', '46', '52', '56', '61', '68', '69', '74', '78', '86',
       '87', '94', '95', '96', '99', '100', '104', '105', '106', '107', '117',
       '120', '123', '124', '125', '128', '129', '138', '143', '156', '157',
       '159', '160', '165', '184', '191', '195', '201', '220', '231', '232',
       '233', '236', '247', '248', '250', '251', '252', '261', '263', '264',
       '267', '272', '279', '281', '282', '292', '303', '307', '308', '312',
       '315', '317', '322', '332', '334', '336', '338', '351', '353', '360',
       '362', '382', '384', '385', '391', '403', '404', '413', '421', '450',
       '458'],
      dtype='object', name='Transformer')
WARNING:pypsa.consistency:The following transformers have zero r, which could break the linear load flow:
Index(['2', '5', '10', '12', '13', '15', '18', '20', '22', '24', '26', '30',
       '32', '37', '42', '46', '52', '56', '61', '68', '69', '74', '78', '86',
       '87', '94', '95', '96', '99', '100', '104', '105', '106', '107', '117',
       '120', '123', '124', '125', '128', '129', '138', '143', '156', '157',
       '159', '160', '165', '184', '191', '195', '201', '220', '231', '232',
       '233', '236', '247', '248', '250', '251', '252', '261', '263', '264',
       '267', '272', '279', '281', '282', '292', '303', '307', '308', '312',
       '315', '317', '322', '332', '334', '336', '338', '351', '353', '360',
       '362', '382', '384', '385', '391', '403', '404', '413', '421', '450',
       '458'],
      dtype='object', name='Transformer')
/home/docs/checkouts/readthedocs.org/user_builds/pypsa/envs/latest/lib/python3.12/site-packages/linopy/common.py:147: UserWarning: coords for dimension(s) ['Generator'] is not aligned with the pandas object. Previously, the indexes of the pandas were ignored and overwritten in these cases. Now, the pandas object's coordinates are taken considered for alignment.
  warn(
INFO:linopy.model: Solve problem using Highs solver
INFO:linopy.io: Writing time: 0.23s
INFO:linopy.solvers:Log file at /tmp/highs.log
Running HiGHS 1.7.2 (git hash: 184e327): Copyright (c) 2024 HiGHS under MIT licence terms
Coefficient ranges:
INFO:linopy.constants: Optimization successful:
Status: ok
Termination condition: optimal
Solution: 9940 primals, 25251 duals
Objective: 8.74e+05
Solver model: available
Solver message: optimal

INFO:pypsa.optimization.optimize:The shadow-prices of the constraints Generator-fix-p-lower, Generator-fix-p-upper, Line-fix-s-lower, Line-fix-s-upper, Transformer-fix-s-lower, Transformer-fix-s-upper, StorageUnit-fix-p_dispatch-lower, StorageUnit-fix-p_dispatch-upper, StorageUnit-fix-p_store-lower, StorageUnit-fix-p_store-upper, StorageUnit-fix-state_of_charge-lower, StorageUnit-fix-state_of_charge-upper, Kirchhoff-Voltage-Law, StorageUnit-energy_balance were not assigned to the network.
  Matrix [1e-02, 2e+02]
  Cost   [3e+00, 1e+02]
  Bound  [0e+00, 0e+00]
  RHS    [2e-11, 6e+03]
Presolving model
3072 rows, 6884 cols, 18635 nonzeros  0s
2311 rows, 6107 cols, 17643 nonzeros  0s
2092 rows, 5223 cols, 16613 nonzeros  0s
Presolve : Reductions: rows 2092(-23159); columns 5223(-4717); elements 16613(-32985)
Solving the presolved LP
Using EKK dual simplex solver - serial
  Iteration        Objective     Infeasibilities num(sum)
          0     1.1874238963e+04 Pr: 1948(1.20222e+07) 0s
       2887     8.7376390233e+05 Pr: 0(0); Du: 0(8.71238e-14) 0s
Solving the original LP from the solution after postsolve
Model   status      : Optimal
Simplex   iterations: 2887
Objective value     :  8.7376390233e+05
HiGHS run time      :          0.35
Writing the solution to /tmp/linopy-solve-4lk79cxs.sol
WARNING:pypsa.consistency:The following transformers have zero r, which could break the linear load flow:
Index(['2', '5', '10', '12', '13', '15', '18', '20', '22', '24', '26', '30',
       '32', '37', '42', '46', '52', '56', '61', '68', '69', '74', '78', '86',
       '87', '94', '95', '96', '99', '100', '104', '105', '106', '107', '117',
       '120', '123', '124', '125', '128', '129', '138', '143', '156', '157',
       '159', '160', '165', '184', '191', '195', '201', '220', '231', '232',
       '233', '236', '247', '248', '250', '251', '252', '261', '263', '264',
       '267', '272', '279', '281', '282', '292', '303', '307', '308', '312',
       '315', '317', '322', '332', '334', '336', '338', '351', '353', '360',
       '362', '382', '384', '385', '391', '403', '404', '413', '421', '450',
       '458'],
      dtype='object', name='Transformer')
WARNING:pypsa.consistency:The following transformers have zero r, which could break the linear load flow:
Index(['2', '5', '10', '12', '13', '15', '18', '20', '22', '24', '26', '30',
       '32', '37', '42', '46', '52', '56', '61', '68', '69', '74', '78', '86',
       '87', '94', '95', '96', '99', '100', '104', '105', '106', '107', '117',
       '120', '123', '124', '125', '128', '129', '138', '143', '156', '157',
       '159', '160', '165', '184', '191', '195', '201', '220', '231', '232',
       '233', '236', '247', '248', '250', '251', '252', '261', '263', '264',
       '267', '272', '279', '281', '282', '292', '303', '307', '308', '312',
       '315', '317', '322', '332', '334', '336', '338', '351', '353', '360',
       '362', '382', '384', '385', '391', '403', '404', '413', '421', '450',
       '458'],
      dtype='object', name='Transformer')
/home/docs/checkouts/readthedocs.org/user_builds/pypsa/envs/latest/lib/python3.12/site-packages/linopy/common.py:147: UserWarning: coords for dimension(s) ['Generator'] is not aligned with the pandas object. Previously, the indexes of the pandas were ignored and overwritten in these cases. Now, the pandas object's coordinates are taken considered for alignment.
  warn(
INFO:linopy.model: Solve problem using Highs solver
INFO:linopy.io: Writing time: 0.24s
INFO:linopy.solvers:Log file at /tmp/highs.log
Running HiGHS 1.7.2 (git hash: 184e327): Copyright (c) 2024 HiGHS under MIT licence terms
Coefficient ranges:
INFO:linopy.constants: Optimization successful:
Status: ok
Termination condition: optimal
Solution: 9940 primals, 25251 duals
Objective: 7.91e+05
Solver model: available
Solver message: optimal

INFO:pypsa.optimization.optimize:The shadow-prices of the constraints Generator-fix-p-lower, Generator-fix-p-upper, Line-fix-s-lower, Line-fix-s-upper, Transformer-fix-s-lower, Transformer-fix-s-upper, StorageUnit-fix-p_dispatch-lower, StorageUnit-fix-p_dispatch-upper, StorageUnit-fix-p_store-lower, StorageUnit-fix-p_store-upper, StorageUnit-fix-state_of_charge-lower, StorageUnit-fix-state_of_charge-upper, Kirchhoff-Voltage-Law, StorageUnit-energy_balance were not assigned to the network.
  Matrix [1e-02, 2e+02]
  Cost   [3e+00, 1e+02]
  Bound  [0e+00, 0e+00]
  RHS    [7e-11, 6e+03]
Presolving model
3232 rows, 8647 cols, 20589 nonzeros  0s
2252 rows, 7639 cols, 19139 nonzeros  0s
2171 rows, 5434 cols, 16677 nonzeros  0s
2140 rows, 5385 cols, 16696 nonzeros  0s
Presolve : Reductions: rows 2140(-23111); columns 5385(-4555); elements 16696(-32902)
Solving the presolved LP
Using EKK dual simplex solver - serial
  Iteration        Objective     Infeasibilities num(sum)
          0    -9.2131838325e-01 Pr: 1992(1.18609e+07) 0s
       2891     7.9078659488e+05 Pr: 0(0); Du: 0(8.72141e-14) 0s
Solving the original LP from the solution after postsolve
Model   status      : Optimal
Simplex   iterations: 2891
Objective value     :  7.9078659488e+05
HiGHS run time      :          0.35
Writing the solution to /tmp/linopy-solve-h9498gnk.sol
WARNING:pypsa.consistency:The following transformers have zero r, which could break the linear load flow:
Index(['2', '5', '10', '12', '13', '15', '18', '20', '22', '24', '26', '30',
       '32', '37', '42', '46', '52', '56', '61', '68', '69', '74', '78', '86',
       '87', '94', '95', '96', '99', '100', '104', '105', '106', '107', '117',
       '120', '123', '124', '125', '128', '129', '138', '143', '156', '157',
       '159', '160', '165', '184', '191', '195', '201', '220', '231', '232',
       '233', '236', '247', '248', '250', '251', '252', '261', '263', '264',
       '267', '272', '279', '281', '282', '292', '303', '307', '308', '312',
       '315', '317', '322', '332', '334', '336', '338', '351', '353', '360',
       '362', '382', '384', '385', '391', '403', '404', '413', '421', '450',
       '458'],
      dtype='object', name='Transformer')
WARNING:pypsa.consistency:The following transformers have zero r, which could break the linear load flow:
Index(['2', '5', '10', '12', '13', '15', '18', '20', '22', '24', '26', '30',
       '32', '37', '42', '46', '52', '56', '61', '68', '69', '74', '78', '86',
       '87', '94', '95', '96', '99', '100', '104', '105', '106', '107', '117',
       '120', '123', '124', '125', '128', '129', '138', '143', '156', '157',
       '159', '160', '165', '184', '191', '195', '201', '220', '231', '232',
       '233', '236', '247', '248', '250', '251', '252', '261', '263', '264',
       '267', '272', '279', '281', '282', '292', '303', '307', '308', '312',
       '315', '317', '322', '332', '334', '336', '338', '351', '353', '360',
       '362', '382', '384', '385', '391', '403', '404', '413', '421', '450',
       '458'],
      dtype='object', name='Transformer')
/home/docs/checkouts/readthedocs.org/user_builds/pypsa/envs/latest/lib/python3.12/site-packages/linopy/common.py:147: UserWarning: coords for dimension(s) ['Generator'] is not aligned with the pandas object. Previously, the indexes of the pandas were ignored and overwritten in these cases. Now, the pandas object's coordinates are taken considered for alignment.
  warn(
INFO:linopy.model: Solve problem using Highs solver
INFO:linopy.io: Writing time: 0.24s
INFO:linopy.solvers:Log file at /tmp/highs.log
Running HiGHS 1.7.2 (git hash: 184e327): Copyright (c) 2024 HiGHS under MIT licence terms
Coefficient ranges:
INFO:linopy.constants: Optimization successful:
Status: ok
Termination condition: optimal
Solution: 9940 primals, 25251 duals
Objective: 1.46e+06
Solver model: available
Solver message: optimal

INFO:pypsa.optimization.optimize:The shadow-prices of the constraints Generator-fix-p-lower, Generator-fix-p-upper, Line-fix-s-lower, Line-fix-s-upper, Transformer-fix-s-lower, Transformer-fix-s-upper, StorageUnit-fix-p_dispatch-lower, StorageUnit-fix-p_dispatch-upper, StorageUnit-fix-p_store-lower, StorageUnit-fix-p_store-upper, StorageUnit-fix-state_of_charge-lower, StorageUnit-fix-state_of_charge-upper, Kirchhoff-Voltage-Law, StorageUnit-energy_balance were not assigned to the network.
  Matrix [1e-02, 2e+02]
  Cost   [3e+00, 1e+02]
  Bound  [0e+00, 0e+00]
  RHS    [4e-10, 6e+03]
Presolving model
3220 rows, 8585 cols, 20504 nonzeros  0s
2227 rows, 7558 cols, 19038 nonzeros  0s
2152 rows, 5407 cols, 16637 nonzeros  0s
2127 rows, 5364 cols, 16680 nonzeros  0s
Presolve : Reductions: rows 2127(-23124); columns 5364(-4576); elements 16680(-32918)
Solving the presolved LP
Using EKK dual simplex solver - serial
  Iteration        Objective     Infeasibilities num(sum)
          0     0.0000000000e+00 Ph1: 0(0) 0s
       2721     1.4552326783e+06 Pr: 0(0); Du: 0(1.15641e-12) 0s
Solving the original LP from the solution after postsolve
Model   status      : Optimal
Simplex   iterations: 2721
Objective value     :  1.4552326783e+06
HiGHS run time      :          0.35
Writing the solution to /tmp/linopy-solve-haor7h06.sol
WARNING:pypsa.consistency:The following transformers have zero r, which could break the linear load flow:
Index(['2', '5', '10', '12', '13', '15', '18', '20', '22', '24', '26', '30',
       '32', '37', '42', '46', '52', '56', '61', '68', '69', '74', '78', '86',
       '87', '94', '95', '96', '99', '100', '104', '105', '106', '107', '117',
       '120', '123', '124', '125', '128', '129', '138', '143', '156', '157',
       '159', '160', '165', '184', '191', '195', '201', '220', '231', '232',
       '233', '236', '247', '248', '250', '251', '252', '261', '263', '264',
       '267', '272', '279', '281', '282', '292', '303', '307', '308', '312',
       '315', '317', '322', '332', '334', '336', '338', '351', '353', '360',
       '362', '382', '384', '385', '391', '403', '404', '413', '421', '450',
       '458'],
      dtype='object', name='Transformer')
WARNING:pypsa.consistency:The following transformers have zero r, which could break the linear load flow:
Index(['2', '5', '10', '12', '13', '15', '18', '20', '22', '24', '26', '30',
       '32', '37', '42', '46', '52', '56', '61', '68', '69', '74', '78', '86',
       '87', '94', '95', '96', '99', '100', '104', '105', '106', '107', '117',
       '120', '123', '124', '125', '128', '129', '138', '143', '156', '157',
       '159', '160', '165', '184', '191', '195', '201', '220', '231', '232',
       '233', '236', '247', '248', '250', '251', '252', '261', '263', '264',
       '267', '272', '279', '281', '282', '292', '303', '307', '308', '312',
       '315', '317', '322', '332', '334', '336', '338', '351', '353', '360',
       '362', '382', '384', '385', '391', '403', '404', '413', '421', '450',
       '458'],
      dtype='object', name='Transformer')
/home/docs/checkouts/readthedocs.org/user_builds/pypsa/envs/latest/lib/python3.12/site-packages/linopy/common.py:147: UserWarning: coords for dimension(s) ['Generator'] is not aligned with the pandas object. Previously, the indexes of the pandas were ignored and overwritten in these cases. Now, the pandas object's coordinates are taken considered for alignment.
  warn(
INFO:linopy.model: Solve problem using Highs solver
INFO:linopy.io: Writing time: 0.24s
INFO:linopy.solvers:Log file at /tmp/highs.log
Running HiGHS 1.7.2 (git hash: 184e327): Copyright (c) 2024 HiGHS under MIT licence terms
Coefficient ranges:
INFO:linopy.constants: Optimization successful:
Status: ok
Termination condition: optimal
Solution: 9940 primals, 25251 duals
Objective: 2.65e+06
Solver model: available
Solver message: optimal

INFO:pypsa.optimization.optimize:The shadow-prices of the constraints Generator-fix-p-lower, Generator-fix-p-upper, Line-fix-s-lower, Line-fix-s-upper, Transformer-fix-s-lower, Transformer-fix-s-upper, StorageUnit-fix-p_dispatch-lower, StorageUnit-fix-p_dispatch-upper, StorageUnit-fix-p_store-lower, StorageUnit-fix-p_store-upper, StorageUnit-fix-state_of_charge-lower, StorageUnit-fix-state_of_charge-upper, Kirchhoff-Voltage-Law, StorageUnit-energy_balance were not assigned to the network.
  Matrix [1e-02, 2e+02]
  Cost   [3e+00, 1e+02]
  Bound  [0e+00, 0e+00]
  RHS    [7e-10, 6e+03]
Presolving model
3089 rows, 6987 cols, 18754 nonzeros  0s
2311 rows, 6193 cols, 17783 nonzeros  0s
2082 rows, 5248 cols, 16751 nonzeros  0s
Presolve : Reductions: rows 2082(-23169); columns 5248(-4692); elements 16751(-32847)
Solving the presolved LP
Using EKK dual simplex solver - serial
  Iteration        Objective     Infeasibilities num(sum)
          0     0.0000000000e+00 Ph1: 0(0) 0s
       2744     2.6490264476e+06 Pr: 0(0); Du: 0(2.64411e-12) 0s
Solving the original LP from the solution after postsolve
Model   status      : Optimal
Simplex   iterations: 2744
Objective value     :  2.6490264476e+06
HiGHS run time      :          0.33
Writing the solution to /tmp/linopy-solve-y4kyibnj.sol
WARNING:pypsa.consistency:The following transformers have zero r, which could break the linear load flow:
Index(['2', '5', '10', '12', '13', '15', '18', '20', '22', '24', '26', '30',
       '32', '37', '42', '46', '52', '56', '61', '68', '69', '74', '78', '86',
       '87', '94', '95', '96', '99', '100', '104', '105', '106', '107', '117',
       '120', '123', '124', '125', '128', '129', '138', '143', '156', '157',
       '159', '160', '165', '184', '191', '195', '201', '220', '231', '232',
       '233', '236', '247', '248', '250', '251', '252', '261', '263', '264',
       '267', '272', '279', '281', '282', '292', '303', '307', '308', '312',
       '315', '317', '322', '332', '334', '336', '338', '351', '353', '360',
       '362', '382', '384', '385', '391', '403', '404', '413', '421', '450',
       '458'],
      dtype='object', name='Transformer')
WARNING:pypsa.consistency:The following transformers have zero r, which could break the linear load flow:
Index(['2', '5', '10', '12', '13', '15', '18', '20', '22', '24', '26', '30',
       '32', '37', '42', '46', '52', '56', '61', '68', '69', '74', '78', '86',
       '87', '94', '95', '96', '99', '100', '104', '105', '106', '107', '117',
       '120', '123', '124', '125', '128', '129', '138', '143', '156', '157',
       '159', '160', '165', '184', '191', '195', '201', '220', '231', '232',
       '233', '236', '247', '248', '250', '251', '252', '261', '263', '264',
       '267', '272', '279', '281', '282', '292', '303', '307', '308', '312',
       '315', '317', '322', '332', '334', '336', '338', '351', '353', '360',
       '362', '382', '384', '385', '391', '403', '404', '413', '421', '450',
       '458'],
      dtype='object', name='Transformer')
/home/docs/checkouts/readthedocs.org/user_builds/pypsa/envs/latest/lib/python3.12/site-packages/linopy/common.py:147: UserWarning: coords for dimension(s) ['Generator'] is not aligned with the pandas object. Previously, the indexes of the pandas were ignored and overwritten in these cases. Now, the pandas object's coordinates are taken considered for alignment.
  warn(
INFO:linopy.model: Solve problem using Highs solver
INFO:linopy.io: Writing time: 0.24s
INFO:linopy.solvers:Log file at /tmp/highs.log
Running HiGHS 1.7.2 (git hash: 184e327): Copyright (c) 2024 HiGHS under MIT licence terms
Coefficient ranges:
  Matrix [1e-02, 2e+02]
  Cost   [3e+00, 1e+02]
  Bound  [0e+00, 0e+00]
  RHS    [9e-11, 6e+03]
Presolving model
3085 rows, 6973 cols, 18738 nonzeros  0s
2316 rows, 6188 cols, 17774 nonzeros  0s
2086 rows, 5261 cols, 16741 nonzeros  0s
Presolve : Reductions: rows 2086(-23165); columns 5261(-4679); elements 16741(-32857)
Solving the presolved LP
Using EKK dual simplex solver - serial
  Iteration        Objective     Infeasibilities num(sum)
          0     0.0000000000e+00 Ph1: 0(0) 0s
       2796     2.1429568887e+06 Pr: 0(0); Du: 0(7.10543e-15) 0s
Solving the original LP from the solution after postsolve
Model   status      : Optimal
Simplex   iterations: 2796
Objective value     :  2.1429568887e+06
HiGHS run time      :          0.33
INFO:linopy.constants: Optimization successful:
Status: ok
Termination condition: optimal
Solution: 9940 primals, 25251 duals
Objective: 2.14e+06
Solver model: available
Solver message: optimal

INFO:pypsa.optimization.optimize:The shadow-prices of the constraints Generator-fix-p-lower, Generator-fix-p-upper, Line-fix-s-lower, Line-fix-s-upper, Transformer-fix-s-lower, Transformer-fix-s-upper, StorageUnit-fix-p_dispatch-lower, StorageUnit-fix-p_dispatch-upper, StorageUnit-fix-p_store-lower, StorageUnit-fix-p_store-upper, StorageUnit-fix-state_of_charge-lower, StorageUnit-fix-state_of_charge-upper, Kirchhoff-Voltage-Law, StorageUnit-energy_balance were not assigned to the network.
Writing the solution to /tmp/linopy-solve-savz_qei.sol
[10]:
p_by_carrier = network.generators_t.p.groupby(network.generators.carrier, axis=1).sum()
p_by_carrier.drop(
    (p_by_carrier.max()[p_by_carrier.max() < 1700.0]).index, axis=1, inplace=True
)
p_by_carrier.columns
/tmp/ipykernel_3120/901685434.py:1: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.
  p_by_carrier = network.generators_t.p.groupby(network.generators.carrier, axis=1).sum()
[10]:
Index(['Brown Coal', 'Gas', 'Hard Coal', 'Nuclear', 'Run of River', 'Solar',
       'Wind Offshore', 'Wind Onshore'],
      dtype='object', name='carrier')
[11]:
colors = {
    "Brown Coal": "brown",
    "Hard Coal": "k",
    "Nuclear": "r",
    "Run of River": "green",
    "Wind Onshore": "blue",
    "Solar": "yellow",
    "Wind Offshore": "cyan",
    "Waste": "orange",
    "Gas": "orange",
}
# reorder
cols = [
    "Nuclear",
    "Run of River",
    "Brown Coal",
    "Hard Coal",
    "Gas",
    "Wind Offshore",
    "Wind Onshore",
    "Solar",
]
p_by_carrier = p_by_carrier[cols]
[12]:
c = [colors[col] for col in p_by_carrier.columns]

fig, ax = plt.subplots(figsize=(12, 6))
(p_by_carrier / 1e3).plot(kind="area", ax=ax, linewidth=4, color=c, alpha=0.7)
ax.legend(ncol=4, loc="upper left")
ax.set_ylabel("GW")
ax.set_xlabel("")
fig.tight_layout()
../_images/examples_scigrid-lopf-then-pf_16_0.png
[13]:
fig, ax = plt.subplots(figsize=(12, 6))

p_storage = network.storage_units_t.p.sum(axis=1)
state_of_charge = network.storage_units_t.state_of_charge.sum(axis=1)
p_storage.plot(label="Pumped hydro dispatch", ax=ax, linewidth=3)
state_of_charge.plot(label="State of charge", ax=ax, linewidth=3)

ax.legend()
ax.grid()
ax.set_ylabel("MWh")
ax.set_xlabel("")
fig.tight_layout()
../_images/examples_scigrid-lopf-then-pf_17_0.png
[14]:
now = network.snapshots[4]

With the linear load flow, there is the following per unit loading:

[15]:
loading = network.lines_t.p0.loc[now] / network.lines.s_nom
loading.describe()
[15]:
count    852.000000
mean      -0.002718
std        0.259994
min       -0.700000
25%       -0.127897
50%        0.003209
75%        0.121985
max        0.700000
dtype: float64
[16]:
fig, ax = plt.subplots(subplot_kw={"projection": ccrs.EqualEarth()}, figsize=(9, 9))
network.plot(
    ax=ax,
    line_colors=abs(loading),
    line_cmap=plt.cm.jet,
    title="Line loading",
    bus_sizes=1e-3,
    bus_alpha=0.7,
)
fig.tight_layout();
/home/docs/checkouts/readthedocs.org/user_builds/pypsa/envs/latest/lib/python3.12/site-packages/cartopy/mpl/feature_artist.py:144: UserWarning: facecolor will have no effect as it has been defined as "never".
  warnings.warn('facecolor will have no effect as it has been '
../_images/examples_scigrid-lopf-then-pf_21_1.png

Let’s have a look at the marginal prices

[17]:
network.buses_t.marginal_price.loc[now].describe()
[17]:
count    585.000000
mean      15.737598
std       10.941995
min      -10.397824
25%        6.992120
50%       15.841190
75%       25.048186
max       52.150120
Name: 2011-01-01 04:00:00, dtype: float64
[18]:
fig, ax = plt.subplots(subplot_kw={"projection": ccrs.PlateCarree()}, figsize=(8, 8))

plt.hexbin(
    network.buses.x,
    network.buses.y,
    gridsize=20,
    C=network.buses_t.marginal_price.loc[now],
    cmap=plt.cm.jet,
    zorder=3,
)
network.plot(ax=ax, line_widths=pd.Series(0.5, network.lines.index), bus_sizes=0)

cb = plt.colorbar(location="bottom")
cb.set_label("Locational Marginal Price (EUR/MWh)")
fig.tight_layout()
/home/docs/checkouts/readthedocs.org/user_builds/pypsa/envs/latest/lib/python3.12/site-packages/cartopy/mpl/feature_artist.py:144: UserWarning: facecolor will have no effect as it has been defined as "never".
  warnings.warn('facecolor will have no effect as it has been '
../_images/examples_scigrid-lopf-then-pf_24_1.png

Curtailment variable#

By considering how much power is available and how much is generated, you can see what share is curtailed:

[19]:
carrier = "Wind Onshore"

capacity = network.generators.groupby("carrier").sum().at[carrier, "p_nom"]
p_available = network.generators_t.p_max_pu.multiply(network.generators["p_nom"])
p_available_by_carrier = p_available.groupby(network.generators.carrier, axis=1).sum()
p_curtailed_by_carrier = p_available_by_carrier - p_by_carrier
/tmp/ipykernel_3120/2097778438.py:5: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.
  p_available_by_carrier = p_available.groupby(network.generators.carrier, axis=1).sum()
[20]:
p_df = pd.DataFrame(
    {
        carrier + " available": p_available_by_carrier[carrier],
        carrier + " dispatched": p_by_carrier[carrier],
        carrier + " curtailed": p_curtailed_by_carrier[carrier],
    }
)

p_df[carrier + " capacity"] = capacity
[21]:
p_df["Wind Onshore curtailed"][p_df["Wind Onshore curtailed"] < 0.0] = 0.0
/tmp/ipykernel_3120/1546145974.py:1: FutureWarning: ChainedAssignmentError: behaviour will change in pandas 3.0!
You are setting values through chained assignment. Currently this works in certain cases, but when using Copy-on-Write (which will become the default behaviour in pandas 3.0) this will never work to update the original DataFrame or Series, because the intermediate object on which we are setting values will behave as a copy.
A typical example is when you are setting values in a column of a DataFrame, like:

df["col"][row_indexer] = value

Use `df.loc[row_indexer, "col"] = values` instead, to perform the assignment in a single step and ensure this keeps updating the original `df`.

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

  p_df["Wind Onshore curtailed"][p_df["Wind Onshore curtailed"] < 0.0] = 0.0
[22]:
fig, ax = plt.subplots(figsize=(10, 4))
p_df[[carrier + " dispatched", carrier + " curtailed"]].plot(
    kind="area", ax=ax, linewidth=3
)
p_df[[carrier + " available", carrier + " capacity"]].plot(ax=ax, linewidth=3)

ax.set_xlabel("")
ax.set_ylabel("Power [MW]")
ax.set_ylim([0, 40000])
ax.legend()
fig.tight_layout()
../_images/examples_scigrid-lopf-then-pf_29_0.png

Non-Linear Power Flow#

Now perform a full Newton-Raphson power flow on the first hour. For the PF, set the P to the optimised P.

[23]:
network.generators_t.p_set = network.generators_t.p
network.storage_units_t.p_set = network.storage_units_t.p

Set all buses to PV, since we don’t know what Q set points are

[24]:
network.generators.control = "PV"

# Need some PQ buses so that Jacobian doesn't break
f = network.generators[network.generators.bus == "492"]
network.generators.loc[f.index, "control"] = "PQ"

Now, perform the non-linear PF.

[25]:
info = network.pf();
INFO:pypsa.pf:Performing non-linear load-flow on AC sub-network <pypsa.components.SubNetwork object at 0x7ff38d4ac6e0> for snapshots DatetimeIndex(['2011-01-01 00:00:00', '2011-01-01 01:00:00',
               '2011-01-01 02:00:00', '2011-01-01 03:00:00',
               '2011-01-01 04:00:00', '2011-01-01 05:00:00',
               '2011-01-01 06:00:00', '2011-01-01 07:00:00',
               '2011-01-01 08:00:00', '2011-01-01 09:00:00',
               '2011-01-01 10:00:00', '2011-01-01 11:00:00',
               '2011-01-01 12:00:00', '2011-01-01 13:00:00',
               '2011-01-01 14:00:00', '2011-01-01 15:00:00',
               '2011-01-01 16:00:00', '2011-01-01 17:00:00',
               '2011-01-01 18:00:00', '2011-01-01 19:00:00',
               '2011-01-01 20:00:00', '2011-01-01 21:00:00',
               '2011-01-01 22:00:00', '2011-01-01 23:00:00'],
              dtype='datetime64[ns]', name='snapshot', freq=None)

Any failed to converge?

[26]:
(~info.converged).any().any()
[26]:
False

With the non-linear load flow, there is the following per unit loading of the full thermal rating.

[27]:
(network.lines_t.p0.loc[now] / network.lines.s_nom).describe()
[27]:
count    852.000000
mean       0.000647
std        0.262306
min       -0.813760
25%       -0.123166
50%        0.003103
75%        0.123851
max        0.827593
dtype: float64

Let’s inspect the voltage angle differences across the lines have (in degrees)

[28]:
df = network.lines.copy()

for b in ["bus0", "bus1"]:
    df = pd.merge(
        df, network.buses_t.v_ang.loc[[now]].T, how="left", left_on=b, right_index=True
    )

s = df[str(now) + "_x"] - df[str(now) + "_y"]

(s * 180 / np.pi).describe()
[28]:
count    852.000000
mean      -0.019449
std        2.385725
min      -12.158294
25%       -0.463115
50%        0.001728
75%        0.535552
max       17.959258
dtype: float64

Plot the reactive power

[29]:
fig, ax = plt.subplots(subplot_kw={"projection": ccrs.EqualEarth()}, figsize=(9, 9))

q = network.buses_t.q.loc[now]
bus_colors = pd.Series("r", network.buses.index)
bus_colors[q < 0.0] = "b"

network.plot(
    bus_sizes=1e-4 * abs(q),
    ax=ax,
    bus_colors=bus_colors,
    title="Reactive power feed-in (red=+ve, blue=-ve)",
);
/home/docs/checkouts/readthedocs.org/user_builds/pypsa/envs/latest/lib/python3.12/site-packages/cartopy/mpl/feature_artist.py:144: UserWarning: facecolor will have no effect as it has been defined as "never".
  warnings.warn('facecolor will have no effect as it has been '
../_images/examples_scigrid-lopf-then-pf_43_1.png