Note
You can download this example as a Jupyter notebook or start it in interactive mode.
Non-linear power flow after LOPF#
In this example, the dispatch of generators is optimised using the linear OPF, then a non-linear power flow is run on the resulting dispatch.
Data sources#
Grid: based on SciGRID Version 0.2 which is based on OpenStreetMap.
Load size and location: based on Landkreise (NUTS 3) GDP and population.
Load time series: from ENTSO-E hourly data, scaled up uniformly by factor 1.12 (a simplification of the methodology in Schumacher, Hirth (2015)).
Conventional power plant capacities and locations: BNetzA list.
Wind and solar capacities and locations: EEG Stammdaten, based on http://www.energymap.info/download.html, which represents capacities at the end of 2014. Units without PLZ are removed.
Wind and solar time series: REatlas, Andresen et al, “Validation of Danish wind time series from a new global renewable energy atlas for energy system analysis,” Energy 93 (2015) 1074 - 1088.
Where SciGRID nodes have been split into 220kV and 380kV substations, all load and generation is attached to the 220kV substation.
Warnings#
The data behind the notebook is no longer supported. See PyPSA/pypsa-eur for a newer model that covers the whole of Europe.
This dataset is ONLY intended to demonstrate the capabilities of PyPSA and is NOT (yet) accurate enough to be used for research purposes.
Known problems include:
Rough approximations have been made for missing grid data, e.g. 220kV-380kV transformers and connections between close sub-stations missing from OSM.
There appears to be some unexpected congestion in parts of the network, which may mean for example that the load attachment method (by Voronoi cell overlap with Landkreise) isn’t working, particularly in regions with a high density of substations.
Attaching power plants to the nearest high voltage substation may not reflect reality.
There is no proper n-1 security in the calculations - this can either be simulated with a blanket e.g. 70% reduction in thermal limits (as done here) or a proper security constrained OPF (see e.g. http://pypsa.readthedocs.io/en/latest/examples/scigrid-sclopf.html).
The borders and neighbouring countries are not represented.
Hydroelectric power stations are not modelled accurately.
The marginal costs are illustrative, not accurate.
Only the first day of 2011 is in the github dataset, which is not representative. The full year of 2011 can be downloaded at http://www.pypsa.org/examples/scigrid-with-load-gen-trafos-2011.zip.
The ENTSO-E total load for Germany may not be scaled correctly; it is scaled up uniformly by factor 1.12 (a simplification of the methodology in Schumacher, Hirth (2015), which suggests monthly factors).
Biomass from the EEG Stammdaten are not read in at the moment.
Power plant start up costs, ramping limits/costs, minimum loading rates are not considered.
[1]:
import cartopy.crs as ccrs
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import pypsa
[2]:
network = pypsa.examples.scigrid_de(from_master=True)
/tmp/ipykernel_3597/3015728645.py:1: DeprecationWarning:
The 'update' and 'from_master' parameters are deprecated and do not have any effect. Example networks are always updated and retrieved for the current version.Deprecated in version 0.35 and will be removed in version 1.0.
INFO:pypsa.io:Retrieving network data from https://github.com/PyPSA/PyPSA/raw/master/examples/networks/scigrid-de/scigrid-de.nc.
INFO:pypsa.io:Imported network scigrid-de.nc has buses, carriers, generators, lines, loads, storage_units, transformers
Plot the distribution of the load and of generating tech
[3]:
fig, ax = plt.subplots(
1, 1, subplot_kw={"projection": ccrs.EqualEarth()}, figsize=(8, 8)
)
load_distribution = (
network.loads_t.p_set.loc[network.snapshots[0]].groupby(network.loads.bus).sum()
)
network.plot(bus_sizes=1e-5 * load_distribution, ax=ax, title="Load distribution");
/tmp/ipykernel_3597/2294804304.py:8: DeprecatedWarning:
plot is deprecated as of 0.34 and will be removed in 1.0. Use `n.plot.map()` as a drop-in replacement instead.

[4]:
network.generators.groupby("carrier")["p_nom"].sum()
[4]:
carrier
Brown Coal 20879.500000
Gas 23913.130000
Geothermal 31.700000
Hard Coal 25312.600000
Multiple 152.700000
Nuclear 12068.000000
Oil 2710.200000
Other 3027.800000
Run of River 3999.100000
Solar 37041.524779
Storage Hydro 1445.000000
Waste 1645.900000
Wind Offshore 2973.500000
Wind Onshore 37339.895329
Name: p_nom, dtype: float64
[5]:
network.storage_units.groupby("carrier")["p_nom"].sum()
[5]:
carrier
Pumped Hydro 9179.5
Name: p_nom, dtype: float64
[6]:
techs = ["Gas", "Brown Coal", "Hard Coal", "Wind Offshore", "Wind Onshore", "Solar"]
n_graphs = len(techs)
n_cols = 3
if n_graphs % n_cols == 0:
n_rows = n_graphs // n_cols
else:
n_rows = n_graphs // n_cols + 1
fig, axes = plt.subplots(
nrows=n_rows, ncols=n_cols, subplot_kw={"projection": ccrs.EqualEarth()}
)
size = 6
fig.set_size_inches(size * n_cols, size * n_rows)
for i, tech in enumerate(techs):
i_row = i // n_cols
i_col = i % n_cols
ax = axes[i_row, i_col]
gens = network.generators[network.generators.carrier == tech]
gen_distribution = (
gens.groupby("bus").sum()["p_nom"].reindex(network.buses.index, fill_value=0.0)
)
network.plot(ax=ax, bus_sizes=2e-5 * gen_distribution)
ax.set_title(tech)
fig.tight_layout()
/tmp/ipykernel_3597/3986438909.py:26: DeprecatedWarning:
plot is deprecated as of 0.34 and will be removed in 1.0. Use `n.plot.map()` as a drop-in replacement instead.
/tmp/ipykernel_3597/3986438909.py:26: DeprecatedWarning:
plot is deprecated as of 0.34 and will be removed in 1.0. Use `n.plot.map()` as a drop-in replacement instead.
/tmp/ipykernel_3597/3986438909.py:26: DeprecatedWarning:
plot is deprecated as of 0.34 and will be removed in 1.0. Use `n.plot.map()` as a drop-in replacement instead.
/tmp/ipykernel_3597/3986438909.py:26: DeprecatedWarning:
plot is deprecated as of 0.34 and will be removed in 1.0. Use `n.plot.map()` as a drop-in replacement instead.
/tmp/ipykernel_3597/3986438909.py:26: DeprecatedWarning:
plot is deprecated as of 0.34 and will be removed in 1.0. Use `n.plot.map()` as a drop-in replacement instead.
/tmp/ipykernel_3597/3986438909.py:26: DeprecatedWarning:
plot is deprecated as of 0.34 and will be removed in 1.0. Use `n.plot.map()` as a drop-in replacement instead.

Run Linear Optimal Power Flow on the first day of 2011.
To approximate n-1 security and allow room for reactive power flows, don’t allow any line to be loaded above 70% of their thermal rating
[7]:
contingency_factor = 0.7
network.lines.s_max_pu = contingency_factor
There are some infeasibilities without small extensions
[8]:
network.lines.loc[["316", "527", "602"], "s_nom"] = 1715
We performing a linear OPF for one day, 4 snapshots at a time.
[9]:
group_size = 4
network.storage_units.state_of_charge_initial = 0.0
for i in range(int(24 / group_size)):
# set the initial state of charge based on previous round
if i:
network.storage_units.state_of_charge_initial = (
network.storage_units_t.state_of_charge.loc[
network.snapshots[group_size * i - 1]
]
)
network.optimize(
network.snapshots[group_size * i : group_size * i + group_size],
)
WARNING:pypsa.consistency:The following transformers have zero r, which could break the linear load flow:
Index(['2', '5', '10', '12', '13', '15', '18', '20', '22', '24', '26', '30',
'32', '37', '42', '46', '52', '56', '61', '68', '69', '74', '78', '86',
'87', '94', '95', '96', '99', '100', '104', '105', '106', '107', '117',
'120', '123', '124', '125', '128', '129', '138', '143', '156', '157',
'159', '160', '165', '184', '191', '195', '201', '220', '231', '232',
'233', '236', '247', '248', '250', '251', '252', '261', '263', '264',
'267', '272', '279', '281', '282', '292', '303', '307', '308', '312',
'315', '317', '322', '332', '334', '336', '338', '351', '353', '360',
'362', '382', '384', '385', '391', '403', '404', '413', '421', '450',
'458'],
dtype='object', name='Transformer')
INFO:linopy.model: Solve problem using Highs solver
INFO:linopy.io: Writing time: 0.15s
Running HiGHS 1.10.0 (git hash: fd86653): Copyright (c) 2025 HiGHS under MIT licence terms
LP linopy-problem-xj2sel8k has 23828 rows; 9940 cols; 43518 nonzeros
Coefficient ranges:
Matrix [1e-02, 2e+02]
Cost [3e+00, 1e+02]
Bound [0e+00, 0e+00]
RHS [7e-08, 6e+03]
Presolving model
3039 rows, 6674 cols, 17939 nonzeros 0s
2305 rows, 5924 cols, 16888 nonzeros 0s
Dependent equations search running on 2071 equations with time limit of 1000.00s
Dependent equations search removed 0 rows and 0 nonzeros in 0.00s (limit = 1000.00s)
2071 rows, 5096 cols, 16067 nonzeros 0s
Presolve : Reductions: rows 2071(-21757); columns 5096(-4844); elements 16067(-27451)
Solving the presolved LP
Using EKK dual simplex solver - serial
Iteration Objective Infeasibilities num(sum)
0 0.0000000000e+00 Ph1: 0(0) 0s
2633 1.4496872501e+06 Pr: 0(0) 0s
2633 1.4496872501e+06 Pr: 0(0) 0s
Solving the original LP from the solution after postsolve
Model name : linopy-problem-xj2sel8k
Model status : Optimal
Simplex iterations: 2633
Objective value : 1.4496872501e+06
Relative P-D gap : 5.9424774649e-15
HiGHS run time : 0.20
Writing the solution to /tmp/linopy-solve-59g7nwmc.sol
INFO:linopy.constants: Optimization successful:
Status: ok
Termination condition: optimal
Solution: 9940 primals, 23828 duals
Objective: 1.45e+06
Solver model: available
Solver message: Optimal
INFO:pypsa.optimization.optimize:The shadow-prices of the constraints Generator-fix-p-lower, Generator-fix-p-upper, Line-fix-s-lower, Line-fix-s-upper, Transformer-fix-s-lower, Transformer-fix-s-upper, StorageUnit-fix-p_dispatch-lower, StorageUnit-fix-p_dispatch-upper, StorageUnit-fix-p_store-lower, StorageUnit-fix-p_store-upper, StorageUnit-fix-state_of_charge-lower, StorageUnit-fix-state_of_charge-upper, Kirchhoff-Voltage-Law, StorageUnit-energy_balance were not assigned to the network.
WARNING:pypsa.consistency:The following transformers have zero r, which could break the linear load flow:
Index(['2', '5', '10', '12', '13', '15', '18', '20', '22', '24', '26', '30',
'32', '37', '42', '46', '52', '56', '61', '68', '69', '74', '78', '86',
'87', '94', '95', '96', '99', '100', '104', '105', '106', '107', '117',
'120', '123', '124', '125', '128', '129', '138', '143', '156', '157',
'159', '160', '165', '184', '191', '195', '201', '220', '231', '232',
'233', '236', '247', '248', '250', '251', '252', '261', '263', '264',
'267', '272', '279', '281', '282', '292', '303', '307', '308', '312',
'315', '317', '322', '332', '334', '336', '338', '351', '353', '360',
'362', '382', '384', '385', '391', '403', '404', '413', '421', '450',
'458'],
dtype='object', name='Transformer')
INFO:linopy.model: Solve problem using Highs solver
INFO:linopy.io: Writing time: 0.15s
Running HiGHS 1.10.0 (git hash: fd86653): Copyright (c) 2025 HiGHS under MIT licence terms
LP linopy-problem-nwx5emqn has 23828 rows; 9940 cols; 43518 nonzeros
Coefficient ranges:
Matrix [1e-02, 2e+02]
Cost [3e+00, 1e+02]
Bound [0e+00, 0e+00]
RHS [2e-11, 6e+03]
Presolving model
3072 rows, 6884 cols, 18207 nonzeros 0s
2169 rows, 5953 cols, 16924 nonzeros 0s
Dependent equations search running on 2083 equations with time limit of 1000.00s
Dependent equations search removed 0 rows and 0 nonzeros in 0.00s (limit = 1000.00s)
2083 rows, 5218 cols, 16226 nonzeros 0s
Presolve : Reductions: rows 2083(-21745); columns 5218(-4722); elements 16226(-27292)
Solving the presolved LP
Using EKK dual simplex solver - serial
Iteration Objective Infeasibilities num(sum)
0 0.0000000000e+00 Ph1: 0(0) 0s
2851 8.7376390233e+05 Pr: 0(0); Du: 0(1.09246e-13) 0s
Solving the original LP from the solution after postsolve
INFO:linopy.constants: Optimization successful:
Status: ok
Termination condition: optimal
Solution: 9940 primals, 23828 duals
Objective: 8.74e+05
Solver model: available
Solver message: Optimal
INFO:pypsa.optimization.optimize:The shadow-prices of the constraints Generator-fix-p-lower, Generator-fix-p-upper, Line-fix-s-lower, Line-fix-s-upper, Transformer-fix-s-lower, Transformer-fix-s-upper, StorageUnit-fix-p_dispatch-lower, StorageUnit-fix-p_dispatch-upper, StorageUnit-fix-p_store-lower, StorageUnit-fix-p_store-upper, StorageUnit-fix-state_of_charge-lower, StorageUnit-fix-state_of_charge-upper, Kirchhoff-Voltage-Law, StorageUnit-energy_balance were not assigned to the network.
Model name : linopy-problem-nwx5emqn
Model status : Optimal
Simplex iterations: 2851
Objective value : 8.7376390233e+05
Relative P-D gap : 1.1991086993e-15
HiGHS run time : 0.21
Writing the solution to /tmp/linopy-solve-30d8vxq1.sol
WARNING:pypsa.consistency:The following transformers have zero r, which could break the linear load flow:
Index(['2', '5', '10', '12', '13', '15', '18', '20', '22', '24', '26', '30',
'32', '37', '42', '46', '52', '56', '61', '68', '69', '74', '78', '86',
'87', '94', '95', '96', '99', '100', '104', '105', '106', '107', '117',
'120', '123', '124', '125', '128', '129', '138', '143', '156', '157',
'159', '160', '165', '184', '191', '195', '201', '220', '231', '232',
'233', '236', '247', '248', '250', '251', '252', '261', '263', '264',
'267', '272', '279', '281', '282', '292', '303', '307', '308', '312',
'315', '317', '322', '332', '334', '336', '338', '351', '353', '360',
'362', '382', '384', '385', '391', '403', '404', '413', '421', '450',
'458'],
dtype='object', name='Transformer')
INFO:linopy.model: Solve problem using Highs solver
INFO:linopy.io: Writing time: 0.15s
Running HiGHS 1.10.0 (git hash: fd86653): Copyright (c) 2025 HiGHS under MIT licence terms
LP linopy-problem-5r8nacba has 23828 rows; 9940 cols; 43518 nonzeros
Coefficient ranges:
Matrix [1e-02, 2e+02]
Cost [3e+00, 1e+02]
Bound [0e+00, 0e+00]
RHS [7e-11, 6e+03]
Presolving model
3232 rows, 8647 cols, 20197 nonzeros 0s
2250 rows, 7637 cols, 18703 nonzeros 0s
2182 rows, 5445 cols, 16289 nonzeros 0s
Dependent equations search running on 2149 equations with time limit of 1000.00s
Dependent equations search removed 0 rows and 0 nonzeros in 0.00s (limit = 1000.00s)
2149 rows, 5394 cols, 16365 nonzeros 0s
Presolve : Reductions: rows 2149(-21679); columns 5394(-4546); elements 16365(-27153)
Solving the presolved LP
Using EKK dual simplex solver - serial
Iteration Objective Infeasibilities num(sum)
0 0.0000000000e+00 Ph1: 0(0) 0s
INFO:linopy.constants: Optimization successful:
Status: ok
Termination condition: optimal
Solution: 9940 primals, 23828 duals
Objective: 7.91e+05
Solver model: available
Solver message: Optimal
INFO:pypsa.optimization.optimize:The shadow-prices of the constraints Generator-fix-p-lower, Generator-fix-p-upper, Line-fix-s-lower, Line-fix-s-upper, Transformer-fix-s-lower, Transformer-fix-s-upper, StorageUnit-fix-p_dispatch-lower, StorageUnit-fix-p_dispatch-upper, StorageUnit-fix-p_store-lower, StorageUnit-fix-p_store-upper, StorageUnit-fix-state_of_charge-lower, StorageUnit-fix-state_of_charge-upper, Kirchhoff-Voltage-Law, StorageUnit-energy_balance were not assigned to the network.
2830 7.9078659488e+05 Pr: 0(0); Du: 0(3.61378e-14) 0s
Solving the original LP from the solution after postsolve
Model name : linopy-problem-5r8nacba
Model status : Optimal
Simplex iterations: 2830
Objective value : 7.9078659488e+05
Relative P-D gap : 2.6645840214e-14
HiGHS run time : 0.22
Writing the solution to /tmp/linopy-solve-m9seiaqt.sol
WARNING:pypsa.consistency:The following transformers have zero r, which could break the linear load flow:
Index(['2', '5', '10', '12', '13', '15', '18', '20', '22', '24', '26', '30',
'32', '37', '42', '46', '52', '56', '61', '68', '69', '74', '78', '86',
'87', '94', '95', '96', '99', '100', '104', '105', '106', '107', '117',
'120', '123', '124', '125', '128', '129', '138', '143', '156', '157',
'159', '160', '165', '184', '191', '195', '201', '220', '231', '232',
'233', '236', '247', '248', '250', '251', '252', '261', '263', '264',
'267', '272', '279', '281', '282', '292', '303', '307', '308', '312',
'315', '317', '322', '332', '334', '336', '338', '351', '353', '360',
'362', '382', '384', '385', '391', '403', '404', '413', '421', '450',
'458'],
dtype='object', name='Transformer')
INFO:linopy.model: Solve problem using Highs solver
INFO:linopy.io: Writing time: 0.15s
Running HiGHS 1.10.0 (git hash: fd86653): Copyright (c) 2025 HiGHS under MIT licence terms
LP linopy-problem-fklkmttb has 23828 rows; 9940 cols; 43518 nonzeros
Coefficient ranges:
Matrix [1e-02, 2e+02]
Cost [3e+00, 1e+02]
Bound [0e+00, 0e+00]
RHS [4e-10, 6e+03]
Presolving model
3220 rows, 8585 cols, 20107 nonzeros 0s
2229 rows, 7560 cols, 18633 nonzeros 0s
2167 rows, 5424 cols, 16270 nonzeros 0s
Dependent equations search running on 2130 equations with time limit of 1000.00s
Dependent equations search removed 0 rows and 0 nonzeros in 0.00s (limit = 1000.00s)
2130 rows, 5369 cols, 16382 nonzeros 0s
Presolve : Reductions: rows 2130(-21698); columns 5369(-4571); elements 16382(-27136)
Solving the presolved LP
Using EKK dual simplex solver - serial
Iteration Objective Infeasibilities num(sum)
0 0.0000000000e+00 Ph1: 0(0) 0s
INFO:linopy.constants: Optimization successful:
Status: ok
Termination condition: optimal
Solution: 9940 primals, 23828 duals
Objective: 1.46e+06
Solver model: available
Solver message: Optimal
INFO:pypsa.optimization.optimize:The shadow-prices of the constraints Generator-fix-p-lower, Generator-fix-p-upper, Line-fix-s-lower, Line-fix-s-upper, Transformer-fix-s-lower, Transformer-fix-s-upper, StorageUnit-fix-p_dispatch-lower, StorageUnit-fix-p_dispatch-upper, StorageUnit-fix-p_store-lower, StorageUnit-fix-p_store-upper, StorageUnit-fix-state_of_charge-lower, StorageUnit-fix-state_of_charge-upper, Kirchhoff-Voltage-Law, StorageUnit-energy_balance were not assigned to the network.
2754 1.4552326783e+06 Pr: 0(0); Du: 0(2.15699e-12) 0s
Solving the original LP from the solution after postsolve
Model name : linopy-problem-fklkmttb
Model status : Optimal
Simplex iterations: 2754
Objective value : 1.4552326783e+06
Relative P-D gap : 5.1198552013e-15
HiGHS run time : 0.22
Writing the solution to /tmp/linopy-solve-duhrxqub.sol
WARNING:pypsa.consistency:The following transformers have zero r, which could break the linear load flow:
Index(['2', '5', '10', '12', '13', '15', '18', '20', '22', '24', '26', '30',
'32', '37', '42', '46', '52', '56', '61', '68', '69', '74', '78', '86',
'87', '94', '95', '96', '99', '100', '104', '105', '106', '107', '117',
'120', '123', '124', '125', '128', '129', '138', '143', '156', '157',
'159', '160', '165', '184', '191', '195', '201', '220', '231', '232',
'233', '236', '247', '248', '250', '251', '252', '261', '263', '264',
'267', '272', '279', '281', '282', '292', '303', '307', '308', '312',
'315', '317', '322', '332', '334', '336', '338', '351', '353', '360',
'362', '382', '384', '385', '391', '403', '404', '413', '421', '450',
'458'],
dtype='object', name='Transformer')
INFO:linopy.model: Solve problem using Highs solver
INFO:linopy.io: Writing time: 0.15s
Running HiGHS 1.10.0 (git hash: fd86653): Copyright (c) 2025 HiGHS under MIT licence terms
LP linopy-problem-q40majx7 has 23828 rows; 9940 cols; 43518 nonzeros
Coefficient ranges:
Matrix [1e-02, 2e+02]
Cost [3e+00, 1e+02]
Bound [0e+00, 0e+00]
RHS [7e-10, 6e+03]
Presolving model
3089 rows, 6987 cols, 18321 nonzeros 0s
2174 rows, 6034 cols, 17029 nonzeros 0s
Dependent equations search running on 2107 equations with time limit of 1000.00s
Dependent equations search removed 0 rows and 0 nonzeros in 0.00s (limit = 1000.00s)
2107 rows, 5275 cols, 16207 nonzeros 0s
Presolve : Reductions: rows 2107(-21721); columns 5275(-4665); elements 16207(-27311)
Solving the presolved LP
Using EKK dual simplex solver - serial
Iteration Objective Infeasibilities num(sum)
0 0.0000000000e+00 Ph1: 0(0) 0s
INFO:linopy.constants: Optimization successful:
Status: ok
Termination condition: optimal
Solution: 9940 primals, 23828 duals
Objective: 2.65e+06
Solver model: available
Solver message: Optimal
INFO:pypsa.optimization.optimize:The shadow-prices of the constraints Generator-fix-p-lower, Generator-fix-p-upper, Line-fix-s-lower, Line-fix-s-upper, Transformer-fix-s-lower, Transformer-fix-s-upper, StorageUnit-fix-p_dispatch-lower, StorageUnit-fix-p_dispatch-upper, StorageUnit-fix-p_store-lower, StorageUnit-fix-p_store-upper, StorageUnit-fix-state_of_charge-lower, StorageUnit-fix-state_of_charge-upper, Kirchhoff-Voltage-Law, StorageUnit-energy_balance were not assigned to the network.
2778 2.6472375551e+06 Pr: 0(0); Du: 0(1.62537e-13) 0s
Solving the original LP from the solution after postsolve
Model name : linopy-problem-q40majx7
Model status : Optimal
Simplex iterations: 2778
Objective value : 2.6472375551e+06
Relative P-D gap : 8.7952304548e-16
HiGHS run time : 0.22
Writing the solution to /tmp/linopy-solve-uhw0pls1.sol
WARNING:pypsa.consistency:The following transformers have zero r, which could break the linear load flow:
Index(['2', '5', '10', '12', '13', '15', '18', '20', '22', '24', '26', '30',
'32', '37', '42', '46', '52', '56', '61', '68', '69', '74', '78', '86',
'87', '94', '95', '96', '99', '100', '104', '105', '106', '107', '117',
'120', '123', '124', '125', '128', '129', '138', '143', '156', '157',
'159', '160', '165', '184', '191', '195', '201', '220', '231', '232',
'233', '236', '247', '248', '250', '251', '252', '261', '263', '264',
'267', '272', '279', '281', '282', '292', '303', '307', '308', '312',
'315', '317', '322', '332', '334', '336', '338', '351', '353', '360',
'362', '382', '384', '385', '391', '403', '404', '413', '421', '450',
'458'],
dtype='object', name='Transformer')
INFO:linopy.model: Solve problem using Highs solver
INFO:linopy.io: Writing time: 0.15s
Running HiGHS 1.10.0 (git hash: fd86653): Copyright (c) 2025 HiGHS under MIT licence terms
LP linopy-problem-ad8yuyfh has 23828 rows; 9940 cols; 43518 nonzeros
Coefficient ranges:
Matrix [1e-02, 2e+02]
Cost [3e+00, 1e+02]
Bound [0e+00, 0e+00]
RHS [9e-11, 6e+03]
Presolving model
3085 rows, 6973 cols, 18305 nonzeros 0s
2182 rows, 6032 cols, 16995 nonzeros 0s
Dependent equations search running on 2113 equations with time limit of 1000.00s
Dependent equations search removed 0 rows and 0 nonzeros in 0.00s (limit = 1000.00s)
2113 rows, 5290 cols, 16184 nonzeros 0s
Presolve : Reductions: rows 2113(-21715); columns 5290(-4650); elements 16184(-27334)
Solving the presolved LP
Using EKK dual simplex solver - serial
Iteration Objective Infeasibilities num(sum)
0 0.0000000000e+00 Ph1: 0(0) 0s
INFO:linopy.constants: Optimization successful:
Status: ok
Termination condition: optimal
Solution: 9940 primals, 23828 duals
Objective: 2.14e+06
Solver model: available
Solver message: Optimal
INFO:pypsa.optimization.optimize:The shadow-prices of the constraints Generator-fix-p-lower, Generator-fix-p-upper, Line-fix-s-lower, Line-fix-s-upper, Transformer-fix-s-lower, Transformer-fix-s-upper, StorageUnit-fix-p_dispatch-lower, StorageUnit-fix-p_dispatch-upper, StorageUnit-fix-p_store-lower, StorageUnit-fix-p_store-upper, StorageUnit-fix-state_of_charge-lower, StorageUnit-fix-state_of_charge-upper, Kirchhoff-Voltage-Law, StorageUnit-energy_balance were not assigned to the network.
2760 2.1429568887e+06 Pr: 0(0); Du: 0(4.74287e-13) 0s
Solving the original LP from the solution after postsolve
Model name : linopy-problem-ad8yuyfh
Model status : Optimal
Simplex iterations: 2760
Objective value : 2.1429568887e+06
Relative P-D gap : 7.6923664017e-14
HiGHS run time : 0.22
Writing the solution to /tmp/linopy-solve-cgnfj44g.sol
[10]:
p_by_carrier = network.generators_t.p.groupby(network.generators.carrier, axis=1).sum()
p_by_carrier.drop(
(p_by_carrier.max()[p_by_carrier.max() < 1700.0]).index, axis=1, inplace=True
)
p_by_carrier.columns
/tmp/ipykernel_3597/901685434.py:1: FutureWarning:
DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.
[10]:
Index(['Brown Coal', 'Gas', 'Hard Coal', 'Nuclear', 'Run of River', 'Solar',
'Wind Offshore', 'Wind Onshore'],
dtype='object', name='carrier')
[11]:
colors = {
"Brown Coal": "brown",
"Hard Coal": "k",
"Nuclear": "r",
"Run of River": "green",
"Wind Onshore": "blue",
"Solar": "yellow",
"Wind Offshore": "cyan",
"Waste": "orange",
"Gas": "orange",
}
# reorder
cols = [
"Nuclear",
"Run of River",
"Brown Coal",
"Hard Coal",
"Gas",
"Wind Offshore",
"Wind Onshore",
"Solar",
]
p_by_carrier = p_by_carrier[cols]
[12]:
c = [colors[col] for col in p_by_carrier.columns]
fig, ax = plt.subplots(figsize=(12, 6))
(p_by_carrier / 1e3).plot(kind="area", ax=ax, linewidth=4, color=c, alpha=0.7)
ax.legend(ncol=4, loc="upper left")
ax.set_ylabel("GW")
ax.set_xlabel("")
fig.tight_layout()

[13]:
fig, ax = plt.subplots(figsize=(12, 6))
p_storage = network.storage_units_t.p.sum(axis=1)
state_of_charge = network.storage_units_t.state_of_charge.sum(axis=1)
p_storage.plot(label="Pumped hydro dispatch", ax=ax, linewidth=3)
state_of_charge.plot(label="State of charge", ax=ax, linewidth=3)
ax.legend()
ax.grid()
ax.set_ylabel("MWh")
ax.set_xlabel("")
fig.tight_layout()

[14]:
now = network.snapshots[4]
With the linear load flow, there is the following per unit loading:
[15]:
loading = network.lines_t.p0.loc[now] / network.lines.s_nom
loading.describe()
[15]:
count 852.000000
mean -0.003145
std 0.260237
min -0.700000
25% -0.128281
50% 0.003209
75% 0.121985
max 0.700000
dtype: float64
[16]:
fig, ax = plt.subplots(subplot_kw={"projection": ccrs.EqualEarth()}, figsize=(9, 9))
network.plot(
ax=ax,
line_colors=abs(loading),
line_cmap=plt.cm.jet,
title="Line loading",
bus_sizes=1e-3,
bus_alpha=0.7,
)
fig.tight_layout();
/tmp/ipykernel_3597/3197570878.py:2: DeprecatedWarning:
plot is deprecated as of 0.34 and will be removed in 1.0. Use `n.plot.map()` as a drop-in replacement instead.

Let’s have a look at the marginal prices
[17]:
network.buses_t.marginal_price.loc[now].describe()
[17]:
count 585.000000
mean 15.737598
std 10.941995
min -10.397824
25% 6.992120
50% 15.841190
75% 25.048186
max 52.150120
Name: 2011-01-01 04:00:00, dtype: float64
[18]:
fig, ax = plt.subplots(subplot_kw={"projection": ccrs.PlateCarree()}, figsize=(8, 8))
plt.hexbin(
network.buses.x,
network.buses.y,
gridsize=20,
C=network.buses_t.marginal_price.loc[now],
cmap=plt.cm.jet,
zorder=3,
)
network.plot(ax=ax, line_widths=pd.Series(0.5, network.lines.index), bus_sizes=0)
cb = plt.colorbar(location="bottom")
cb.set_label("Locational Marginal Price (EUR/MWh)")
fig.tight_layout()
/tmp/ipykernel_3597/978829820.py:11: DeprecatedWarning:
plot is deprecated as of 0.34 and will be removed in 1.0. Use `n.plot.map()` as a drop-in replacement instead.

Curtailment variable#
By considering how much power is available and how much is generated, you can see what share is curtailed:
[19]:
carrier = "Wind Onshore"
capacity = network.generators.groupby("carrier").sum().at[carrier, "p_nom"]
p_available = network.generators_t.p_max_pu.multiply(network.generators["p_nom"])
p_available_by_carrier = p_available.groupby(network.generators.carrier, axis=1).sum()
p_curtailed_by_carrier = p_available_by_carrier - p_by_carrier
/tmp/ipykernel_3597/2097778438.py:5: FutureWarning:
DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.
[20]:
p_df = pd.DataFrame(
{
carrier + " available": p_available_by_carrier[carrier],
carrier + " dispatched": p_by_carrier[carrier],
carrier + " curtailed": p_curtailed_by_carrier[carrier],
}
)
p_df[carrier + " capacity"] = capacity
[21]:
p_df["Wind Onshore curtailed"][p_df["Wind Onshore curtailed"] < 0.0] = 0.0
/tmp/ipykernel_3597/1546145974.py:1: FutureWarning:
ChainedAssignmentError: behaviour will change in pandas 3.0!
You are setting values through chained assignment. Currently this works in certain cases, but when using Copy-on-Write (which will become the default behaviour in pandas 3.0) this will never work to update the original DataFrame or Series, because the intermediate object on which we are setting values will behave as a copy.
A typical example is when you are setting values in a column of a DataFrame, like:
df["col"][row_indexer] = value
Use `df.loc[row_indexer, "col"] = values` instead, to perform the assignment in a single step and ensure this keeps updating the original `df`.
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
[22]:
fig, ax = plt.subplots(figsize=(10, 4))
p_df[[carrier + " dispatched", carrier + " curtailed"]].plot(
kind="area", ax=ax, linewidth=3
)
p_df[[carrier + " available", carrier + " capacity"]].plot(ax=ax, linewidth=3)
ax.set_xlabel("")
ax.set_ylabel("Power [MW]")
ax.set_ylim([0, 40000])
ax.legend()
fig.tight_layout()

Non-Linear Power Flow#
Now perform a full Newton-Raphson power flow on the first hour. For the PF, set the P to the optimised P.
[23]:
network.generators_t.p_set = network.generators_t.p
network.storage_units_t.p_set = network.storage_units_t.p
Set all buses to PV, since we don’t know what Q set points are
[24]:
network.generators.control = "PV"
# Need some PQ buses so that Jacobian doesn't break
f = network.generators[network.generators.bus == "492"]
network.generators.loc[f.index, "control"] = "PQ"
Now, perform the non-linear PF.
[25]:
info = network.pf();
INFO:pypsa.pf:Performing non-linear load-flow on AC sub-network <pypsa.networks.SubNetwork object at 0x7a36cf1c8160> for snapshots DatetimeIndex(['2011-01-01 00:00:00', '2011-01-01 01:00:00',
'2011-01-01 02:00:00', '2011-01-01 03:00:00',
'2011-01-01 04:00:00', '2011-01-01 05:00:00',
'2011-01-01 06:00:00', '2011-01-01 07:00:00',
'2011-01-01 08:00:00', '2011-01-01 09:00:00',
'2011-01-01 10:00:00', '2011-01-01 11:00:00',
'2011-01-01 12:00:00', '2011-01-01 13:00:00',
'2011-01-01 14:00:00', '2011-01-01 15:00:00',
'2011-01-01 16:00:00', '2011-01-01 17:00:00',
'2011-01-01 18:00:00', '2011-01-01 19:00:00',
'2011-01-01 20:00:00', '2011-01-01 21:00:00',
'2011-01-01 22:00:00', '2011-01-01 23:00:00'],
dtype='datetime64[ns]', name='snapshot', freq=None)
Any failed to converge?
[26]:
(~info.converged).any().any()
[26]:
np.False_
With the non-linear load flow, there is the following per unit loading of the full thermal rating.
[27]:
(network.lines_t.p0.loc[now] / network.lines.s_nom).describe()
[27]:
count 852.000000
mean 0.000226
std 0.262545
min -0.813767
25% -0.123980
50% 0.003103
75% 0.123851
max 0.827600
dtype: float64
Let’s inspect the voltage angle differences across the lines have (in degrees)
[28]:
df = network.lines.copy()
for b in ["bus0", "bus1"]:
df = pd.merge(
df, network.buses_t.v_ang.loc[[now]].T, how="left", left_on=b, right_index=True
)
s = df[str(now) + "_x"] - df[str(now) + "_y"]
(s * 180 / np.pi).describe()
[28]:
count 852.000000
mean -0.022249
std 2.386780
min -12.158079
25% -0.465772
50% 0.001604
75% 0.534861
max 17.959258
dtype: float64
Plot the reactive power
[29]:
fig, ax = plt.subplots(subplot_kw={"projection": ccrs.EqualEarth()}, figsize=(9, 9))
q = network.buses_t.q.loc[now]
bus_colors = pd.Series("r", network.buses.index)
bus_colors[q < 0.0] = "b"
network.plot(
bus_sizes=1e-4 * abs(q),
ax=ax,
bus_colors=bus_colors,
title="Reactive power feed-in (red=+ve, blue=-ve)",
);
/tmp/ipykernel_3597/3477249009.py:7: DeprecatedWarning:
plot is deprecated as of 0.34 and will be removed in 1.0. Use `n.plot.map()` as a drop-in replacement instead.
