Note

You can download this example as a Jupyter notebook or start it in interactive mode.

Redispatch Example with SciGRID network#

In this example, we compare a 2-stage market with an initial market clearing in two bidding zones with flow-based market coupling and a subsequent redispatch market (incl. curtailment) to an idealised nodal pricing scheme.

[1]:
import cartopy.crs as ccrs
import matplotlib.pyplot as plt

import pypsa
from pypsa.descriptors import get_switchable_as_dense as as_dense

Load example network#

[2]:
o = pypsa.examples.scigrid_de(from_master=True)
o.lines.s_max_pu = 0.7
o.lines.loc[["316", "527", "602"], "s_nom"] = 1715
o.set_snapshots([o.snapshots[12]])
/tmp/ipykernel_3903/3439349439.py:1: DeprecationWarning:

The 'update' and 'from_master' parameters are deprecated and do not have any effect. Example networks are always updated and retrieved for the current version.Deprecated in version 0.35 and will be removed in version 1.0.

INFO:pypsa.io:Retrieving network data from https://github.com/PyPSA/PyPSA/raw/master/examples/networks/scigrid-de/scigrid-de.nc.
INFO:pypsa.io:Imported network scigrid-de.nc has buses, carriers, generators, lines, loads, storage_units, transformers
[3]:
n = o.copy()  # for redispatch model
m = o.copy()  # for market model
[4]:
o.plot();
/tmp/ipykernel_3903/3521453863.py:1: DeprecatedWarning:

plot is deprecated as of 0.34 and will be removed in 1.0. Use `n.plot.map()` as a drop-in replacement instead.

../_images/examples_scigrid-redispatch_5_1.png

Solve original nodal market model o#

First, let us solve a nodal market using the original model o:

[5]:
o.optimize()
WARNING:pypsa.consistency:The following transformers have zero r, which could break the linear load flow:
Index(['2', '5', '10', '12', '13', '15', '18', '20', '22', '24', '26', '30',
       '32', '37', '42', '46', '52', '56', '61', '68', '69', '74', '78', '86',
       '87', '94', '95', '96', '99', '100', '104', '105', '106', '107', '117',
       '120', '123', '124', '125', '128', '129', '138', '143', '156', '157',
       '159', '160', '165', '184', '191', '195', '201', '220', '231', '232',
       '233', '236', '247', '248', '250', '251', '252', '261', '263', '264',
       '267', '272', '279', '281', '282', '292', '303', '307', '308', '312',
       '315', '317', '322', '332', '334', '336', '338', '351', '353', '360',
       '362', '382', '384', '385', '391', '403', '404', '413', '421', '450',
       '458'],
      dtype='object', name='Transformer')
INFO:linopy.model: Solve problem using Highs solver
INFO:linopy.io: Writing time: 0.07s
INFO:linopy.constants: Optimization successful:
Status: ok
Termination condition: optimal
Solution: 2485 primals, 5957 duals
Objective: 3.01e+05
Solver model: available
Solver message: Optimal

INFO:pypsa.optimization.optimize:The shadow-prices of the constraints Generator-fix-p-lower, Generator-fix-p-upper, Line-fix-s-lower, Line-fix-s-upper, Transformer-fix-s-lower, Transformer-fix-s-upper, StorageUnit-fix-p_dispatch-lower, StorageUnit-fix-p_dispatch-upper, StorageUnit-fix-p_store-lower, StorageUnit-fix-p_store-upper, StorageUnit-fix-state_of_charge-lower, StorageUnit-fix-state_of_charge-upper, Kirchhoff-Voltage-Law, StorageUnit-energy_balance were not assigned to the network.
Running HiGHS 1.10.0 (git hash: fd86653): Copyright (c) 2025 HiGHS under MIT licence terms
LP   linopy-problem-h8qp74mq has 5957 rows; 2485 cols; 10851 nonzeros
Coefficient ranges:
  Matrix [1e-02, 2e+02]
  Cost   [3e+00, 1e+02]
  Bound  [0e+00, 0e+00]
  RHS    [4e-10, 6e+03]
Presolving model
817 rows, 2282 cols, 5150 nonzeros  0s
560 rows, 2018 cols, 4770 nonzeros  0s
544 rows, 1363 cols, 4046 nonzeros  0s
Dependent equations search running on 528 equations with time limit of 1000.00s
Dependent equations search removed 0 rows and 0 nonzeros in 0.00s (limit = 1000.00s)
528 rows, 1342 cols, 4086 nonzeros  0s
Presolve : Reductions: rows 528(-5429); columns 1342(-1143); elements 4086(-6765)
Solving the presolved LP
Using EKK dual simplex solver - serial
  Iteration        Objective     Infeasibilities num(sum)
          0    -2.2779660579e-01 Pr: 490(3.20156e+06) 0s
        646     3.0120938233e+05 Pr: 0(0) 0s
Solving the original LP from the solution after postsolve
Model name          : linopy-problem-h8qp74mq
Model status        : Optimal
Simplex   iterations: 646
Objective value     :  3.0120938233e+05
Relative P-D gap    :  4.0581766403e-15
HiGHS run time      :          0.03
Writing the solution to /tmp/linopy-solve-e84g8qwd.sol
[5]:
('ok', 'optimal')

Costs are 301 k€.

Build market model m with two bidding zones#

For this example, we split the German transmission network into two market zones at latitude 51 degrees.

You can build any other market zones by providing an alternative mapping from bus to zone.

[6]:
zones = (n.buses.y > 51).map(lambda x: "North" if x else "South")

Next, we assign this mapping to the market model m.

We re-assign the buses of all generators and loads, and remove all transmission lines within each bidding zone.

Here, we assume that the bidding zones are coupled through the transmission lines that connect them.

[7]:
for c in m.iterate_components(m.one_port_components):
    c.static.bus = c.static.bus.map(zones)

for c in m.iterate_components(m.branch_components):
    c.static.bus0 = c.static.bus0.map(zones)
    c.static.bus1 = c.static.bus1.map(zones)
    internal = c.static.bus0 == c.static.bus1
    m.remove(c.name, c.static.loc[internal].index)

m.remove("Bus", m.buses.index)
m.add("Bus", ["North", "South"]);

Now, we can solve the coupled market with two bidding zones.

[8]:
m.optimize()
INFO:linopy.model: Solve problem using Highs solver
INFO:linopy.io: Writing time: 0.05s
INFO:linopy.constants: Optimization successful:
Status: ok
Termination condition: optimal
Solution: 1561 primals, 3185 duals
Objective: 2.14e+05
Solver model: available
Solver message: Optimal

INFO:pypsa.optimization.optimize:The shadow-prices of the constraints Generator-fix-p-lower, Generator-fix-p-upper, Line-fix-s-lower, Line-fix-s-upper, StorageUnit-fix-p_dispatch-lower, StorageUnit-fix-p_dispatch-upper, StorageUnit-fix-p_store-lower, StorageUnit-fix-p_store-upper, StorageUnit-fix-state_of_charge-lower, StorageUnit-fix-state_of_charge-upper, Kirchhoff-Voltage-Law, StorageUnit-energy_balance were not assigned to the network.
Running HiGHS 1.10.0 (git hash: fd86653): Copyright (c) 2025 HiGHS under MIT licence terms
LP   linopy-problem-r6c5b6ol has 3185 rows; 1561 cols; 4829 nonzeros
Coefficient ranges:
  Matrix [9e-01, 3e+06]
  Cost   [3e+00, 1e+02]
  Bound  [0e+00, 0e+00]
  RHS    [4e-10, 3e+04]
Presolving model
40 rows, 1510 cols, 1587 nonzeros  0s
40 rows, 135 cols, 212 nonzeros  0s
Dependent equations search running on 40 equations with time limit of 1000.00s
Dependent equations search removed 0 rows and 0 nonzeros in 0.00s (limit = 1000.00s)
40 rows, 135 cols, 212 nonzeros  0s
Presolve : Reductions: rows 40(-3145); columns 135(-1426); elements 212(-4617)
Solving the presolved LP
Using EKK dual simplex solver - serial
  Iteration        Objective     Infeasibilities num(sum)
          0    -4.3458587374e-04 Pr: 2(51830.2) 0s
         42     2.1398868596e+05 Pr: 0(0) 0s
Solving the original LP from the solution after postsolve
Model name          : linopy-problem-r6c5b6ol
Model status        : Optimal
Simplex   iterations: 42
Objective value     :  2.1398868596e+05
Relative P-D gap    :  6.2562943224e-15
HiGHS run time      :          0.00
Writing the solution to /tmp/linopy-solve-mwvj00bi.sol
[8]:
('ok', 'optimal')

Costs are 214 k€, which is much lower than the 301 k€ of the nodal market.

This is because network restrictions apart from the North/South division are not taken into account yet.

We can look at the market clearing prices of each zone:

[9]:
m.buses_t.marginal_price
[9]:
Bus North South
snapshot
2011-01-01 12:00:00 8.0 25.0

Build redispatch model n#

Next, based on the market outcome with two bidding zones m, we build a secondary redispatch market n that rectifies transmission constraints through curtailment and ramping up/down thermal generators.

First, we fix the dispatch of generators to the results from the market simulation. (For simplicity, this example disregards storage units.)

[10]:
p = m.generators_t.p / m.generators.p_nom
n.generators_t.p_min_pu = p
n.generators_t.p_max_pu = p

Then, we add generators bidding into redispatch market using the following assumptions:

  • All generators can reduce their dispatch to zero. This includes also curtailment of renewables.

  • All generators can increase their dispatch to their available/nominal capacity.

  • No changes to the marginal costs, i.e. reducing dispatch lowers costs.

With these settings, the 2-stage market should result in the same cost as the nodal market.

[11]:
g_up = n.generators.copy()
g_down = n.generators.copy()

g_up.index = g_up.index.map(lambda x: x + " ramp up")
g_down.index = g_down.index.map(lambda x: x + " ramp down")

up = (
    as_dense(m, "Generator", "p_max_pu") * m.generators.p_nom - m.generators_t.p
).clip(0) / m.generators.p_nom
down = -m.generators_t.p / m.generators.p_nom

up.columns = up.columns.map(lambda x: x + " ramp up")
down.columns = down.columns.map(lambda x: x + " ramp down")

n.add("Generator", g_up.index, p_max_pu=up, **g_up.drop("p_max_pu", axis=1))

n.add(
    "Generator",
    g_down.index,
    p_min_pu=down,
    p_max_pu=0,
    **g_down.drop(["p_max_pu", "p_min_pu"], axis=1),
);

Now, let’s solve the redispatch market:

[12]:
n.optimize()
WARNING:pypsa.consistency:The following transformers have zero r, which could break the linear load flow:
Index(['2', '5', '10', '12', '13', '15', '18', '20', '22', '24', '26', '30',
       '32', '37', '42', '46', '52', '56', '61', '68', '69', '74', '78', '86',
       '87', '94', '95', '96', '99', '100', '104', '105', '106', '107', '117',
       '120', '123', '124', '125', '128', '129', '138', '143', '156', '157',
       '159', '160', '165', '184', '191', '195', '201', '220', '231', '232',
       '233', '236', '247', '248', '250', '251', '252', '261', '263', '264',
       '267', '272', '279', '281', '282', '292', '303', '307', '308', '312',
       '315', '317', '322', '332', '334', '336', '338', '351', '353', '360',
       '362', '382', '384', '385', '391', '403', '404', '413', '421', '450',
       '458'],
      dtype='object', name='Transformer')
INFO:linopy.model: Solve problem using Highs solver
INFO:linopy.io: Writing time: 0.09s
INFO:linopy.constants: Optimization successful:
Status: ok
Termination condition: optimal
Solution: 5331 primals, 11649 duals
Objective: 3.01e+05
Solver model: available
Solver message: Optimal

INFO:pypsa.optimization.optimize:The shadow-prices of the constraints Generator-fix-p-lower, Generator-fix-p-upper, Line-fix-s-lower, Line-fix-s-upper, Transformer-fix-s-lower, Transformer-fix-s-upper, StorageUnit-fix-p_dispatch-lower, StorageUnit-fix-p_dispatch-upper, StorageUnit-fix-p_store-lower, StorageUnit-fix-p_store-upper, StorageUnit-fix-state_of_charge-lower, StorageUnit-fix-state_of_charge-upper, Kirchhoff-Voltage-Law, StorageUnit-energy_balance were not assigned to the network.
Running HiGHS 1.10.0 (git hash: fd86653): Copyright (c) 2025 HiGHS under MIT licence terms
LP   linopy-problem-h8t5mtkb has 11649 rows; 5331 cols; 19389 nonzeros
Coefficient ranges:
  Matrix [1e-02, 2e+02]
  Cost   [3e+00, 1e+02]
  Bound  [0e+00, 0e+00]
  RHS    [2e-19, 6e+03]
Presolving model
817 rows, 2285 cols, 5153 nonzeros  0s
561 rows, 2021 cols, 4777 nonzeros  0s
545 rows, 1364 cols, 4051 nonzeros  0s
Dependent equations search running on 530 equations with time limit of 1000.00s
Dependent equations search removed 0 rows and 0 nonzeros in 0.00s (limit = 1000.00s)
530 rows, 1344 cols, 4118 nonzeros  0s
Presolve : Reductions: rows 530(-11119); columns 1344(-3987); elements 4118(-15271)
Solving the presolved LP
Using EKK dual simplex solver - serial
  Iteration        Objective     Infeasibilities num(sum)
          0     0.0000000000e+00 Ph1: 0(0) 0s
        631     3.0120938233e+05 Pr: 0(0); Du: 0(9.76996e-15) 0s
Solving the original LP from the solution after postsolve
Model name          : linopy-problem-h8t5mtkb
Model status        : Optimal
Simplex   iterations: 631
Objective value     :  3.0120938232e+05
Relative P-D gap    :  3.0919441069e-15
HiGHS run time      :          0.04
Writing the solution to /tmp/linopy-solve-c1k0sr6_.sol
[12]:
('ok', 'optimal')

And, as expected, the costs are the same as for the nodal market: 301 k€.

Now, we can plot both the market results of the 2 bidding zone market and the redispatch results:

[13]:
fig, axs = plt.subplots(
    1, 3, figsize=(20, 10), subplot_kw={"projection": ccrs.AlbersEqualArea()}
)

market = (
    n.generators_t.p[m.generators.index]
    .T.squeeze()
    .groupby(n.generators.bus)
    .sum()
    .div(2e4)
)
n.plot(ax=axs[0], bus_sizes=market, title="2 bidding zones market simulation")

redispatch_up = (
    n.generators_t.p.filter(like="ramp up")
    .T.squeeze()
    .groupby(n.generators.bus)
    .sum()
    .div(2e4)
)
n.plot(
    ax=axs[1], bus_sizes=redispatch_up, bus_colors="blue", title="Redispatch: ramp up"
)

redispatch_down = (
    n.generators_t.p.filter(like="ramp down")
    .T.squeeze()
    .groupby(n.generators.bus)
    .sum()
    .div(-2e4)
)
n.plot(
    ax=axs[2],
    bus_sizes=redispatch_down,
    bus_colors="red",
    title="Redispatch: ramp down / curtail",
);
/tmp/ipykernel_3903/1476626274.py:12: DeprecatedWarning:

plot is deprecated as of 0.34 and will be removed in 1.0. Use `n.plot.map()` as a drop-in replacement instead.

/tmp/ipykernel_3903/1476626274.py:21: DeprecatedWarning:

plot is deprecated as of 0.34 and will be removed in 1.0. Use `n.plot.map()` as a drop-in replacement instead.

/tmp/ipykernel_3903/1476626274.py:32: DeprecatedWarning:

plot is deprecated as of 0.34 and will be removed in 1.0. Use `n.plot.map()` as a drop-in replacement instead.

../_images/examples_scigrid-redispatch_29_1.png

We can also read out the final dispatch of each generator:

[14]:
grouper = n.generators.index.str.split(" ramp", expand=True).get_level_values(0)

n.generators_t.p.groupby(grouper, axis=1).sum().squeeze()
/tmp/ipykernel_3903/2204001103.py:3: FutureWarning:

DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.

[14]:
1 Gas                     0.000000
1 Hard Coal               0.000000
1 Solar                  11.326192
1 Wind Onshore            1.754382
100_220kV Solar          14.913326
                           ...
98 Wind Onshore          71.451646
99_220kV Gas              0.000000
99_220kV Hard Coal        0.000000
99_220kV Solar            8.246606
99_220kV Wind Onshore     3.432939
Name: 2011-01-01 12:00:00, Length: 1423, dtype: float64

Changing bidding strategies in redispatch market#

We can also formulate other bidding strategies or compensation mechanisms for the redispatch market.

For example, that ramping up a generator is twice as expensive.

[15]:
n.generators.loc[n.generators.index.str.contains("ramp up"), "marginal_cost"] *= 2

Or that generators need to be compensated for curtailing them or ramping them down at 50% of their marginal cost.

[16]:
n.generators.loc[n.generators.index.str.contains("ramp down"), "marginal_cost"] *= -0.5

In this way, the outcome should be more expensive than the ideal nodal market:

[17]:
n.optimize()
WARNING:pypsa.consistency:The following transformers have zero r, which could break the linear load flow:
Index(['2', '5', '10', '12', '13', '15', '18', '20', '22', '24', '26', '30',
       '32', '37', '42', '46', '52', '56', '61', '68', '69', '74', '78', '86',
       '87', '94', '95', '96', '99', '100', '104', '105', '106', '107', '117',
       '120', '123', '124', '125', '128', '129', '138', '143', '156', '157',
       '159', '160', '165', '184', '191', '195', '201', '220', '231', '232',
       '233', '236', '247', '248', '250', '251', '252', '261', '263', '264',
       '267', '272', '279', '281', '282', '292', '303', '307', '308', '312',
       '315', '317', '322', '332', '334', '336', '338', '351', '353', '360',
       '362', '382', '384', '385', '391', '403', '404', '413', '421', '450',
       '458'],
      dtype='object', name='Transformer')
INFO:linopy.model: Solve problem using Highs solver
INFO:linopy.io: Writing time: 0.09s
INFO:linopy.constants: Optimization successful:
Status: ok
Termination condition: optimal
Solution: 5331 primals, 11649 duals
Objective: 4.99e+05
Solver model: available
Solver message: Optimal

INFO:pypsa.optimization.optimize:The shadow-prices of the constraints Generator-fix-p-lower, Generator-fix-p-upper, Line-fix-s-lower, Line-fix-s-upper, Transformer-fix-s-lower, Transformer-fix-s-upper, StorageUnit-fix-p_dispatch-lower, StorageUnit-fix-p_dispatch-upper, StorageUnit-fix-p_store-lower, StorageUnit-fix-p_store-upper, StorageUnit-fix-state_of_charge-lower, StorageUnit-fix-state_of_charge-upper, Kirchhoff-Voltage-Law, StorageUnit-energy_balance were not assigned to the network.
Running HiGHS 1.10.0 (git hash: fd86653): Copyright (c) 2025 HiGHS under MIT licence terms
LP   linopy-problem-aolzibm9 has 11649 rows; 5331 cols; 19389 nonzeros
Coefficient ranges:
  Matrix [1e-02, 2e+02]
  Cost   [2e+00, 2e+02]
  Bound  [0e+00, 0e+00]
  RHS    [2e-19, 6e+03]
Presolving model
817 rows, 2277 cols, 5145 nonzeros  0s
559 rows, 2005 cols, 4759 nonzeros  0s
542 rows, 1356 cols, 4040 nonzeros  0s
Dependent equations search running on 526 equations with time limit of 1000.00s
Dependent equations search removed 0 rows and 0 nonzeros in 0.00s (limit = 1000.00s)
526 rows, 1335 cols, 4080 nonzeros  0s
Presolve : Reductions: rows 526(-11123); columns 1335(-3996); elements 4080(-15309)
Solving the presolved LP
Using EKK dual simplex solver - serial
  Iteration        Objective     Infeasibilities num(sum)
          0     0.0000000000e+00 Ph1: 0(0) 0s
        614     4.9929741194e+05 Pr: 0(0); Du: 0(7.4607e-14) 0s
Solving the original LP from the solution after postsolve
Model name          : linopy-problem-aolzibm9
Model status        : Optimal
Simplex   iterations: 614
Objective value     :  4.9929741194e+05
Relative P-D gap    :  1.3406600645e-14
HiGHS run time      :          0.03
Writing the solution to /tmp/linopy-solve-l14gexee.sol
[17]:
('ok', 'optimal')

Costs are now 502 k€ compared to 301 k€.