Wind Turbine combined with Heat Pump and Water Tank

Note

You can download this example as a Jupyter notebook or start it in interactive mode.

Wind Turbine combined with Heat Pump and Water Tank#

In this example the heat demand is supplied by a wind turbine in combination with a heat pump and a water tank that stores hot water with a standing loss.

[1]:
import pandas as pd

import pypsa
[2]:
network = pypsa.Network()
network.set_snapshots(pd.date_range("2016-01-01 00:00", "2016-01-01 03:00", freq="H"))

network.add("Bus", "0", carrier="AC")
network.add("Bus", "0 heat", carrier="heat")

network.add("Carrier", "wind")
network.add("Carrier", "heat")

network.add(
    "Generator",
    "wind turbine",
    bus="0",
    carrier="wind",
    p_nom_extendable=True,
    p_max_pu=[0.0, 0.2, 0.7, 0.4],
    capital_cost=500,
)

network.add("Load", "heat demand", bus="0 heat", p_set=20.0)

# NB: Heat pump has changing efficiency (properly the Coefficient of Performance, COP)
# due to changing ambient temperature
network.add(
    "Link",
    "heat pump",
    bus0="0",
    bus1="0 heat",
    efficiency=[2.5, 3.0, 3.2, 3.0],
    capital_cost=1000,
    p_nom_extendable=True,
)

network.add(
    "Store",
    "water tank",
    bus="0 heat",
    e_cyclic=True,
    e_nom_extendable=True,
    standing_loss=0.01,
)
/tmp/ipykernel_3161/743167227.py:2: FutureWarning: 'H' is deprecated and will be removed in a future version, please use 'h' instead.
  network.set_snapshots(pd.date_range("2016-01-01 00:00", "2016-01-01 03:00", freq="H"))
[3]:
network.optimize()
WARNING:pypsa.consistency:The following buses have carriers which are not defined:
Index(['0'], dtype='object', name='Bus')
WARNING:pypsa.consistency:The following links have carriers which are not defined:
Index(['heat pump'], dtype='object', name='Link')
WARNING:pypsa.consistency:The following buses have carriers which are not defined:
Index(['0'], dtype='object', name='Bus')
WARNING:pypsa.consistency:The following links have carriers which are not defined:
Index(['heat pump'], dtype='object', name='Link')
INFO:linopy.model: Solve problem using Highs solver
INFO:linopy.io: Writing time: 0.06s
INFO:linopy.solvers:Log file at /tmp/highs.log
INFO:linopy.constants: Optimization successful:
Status: ok
Termination condition: optimal
Solution: 19 primals, 39 duals
Objective: 2.35e+04
Solver model: available
Solver message: optimal

INFO:pypsa.optimization.optimize:The shadow-prices of the constraints Generator-ext-p-lower, Generator-ext-p-upper, Link-ext-p-lower, Link-ext-p-upper, Store-ext-e-lower, Store-ext-e-upper, Store-energy_balance were not assigned to the network.
Running HiGHS 1.7.2 (git hash: 184e327): Copyright (c) 2024 HiGHS under MIT licence terms
Coefficient ranges:
  Matrix [2e-01, 3e+00]
  Cost   [5e+02, 1e+03]
  Bound  [0e+00, 0e+00]
  RHS    [2e+01, 2e+01]
Presolving model
9 rows, 8 cols, 21 nonzeros  0s
9 rows, 8 cols, 21 nonzeros  0s
Presolve : Reductions: rows 9(-30); columns 8(-11); elements 21(-45)
Solving the presolved LP
Using EKK dual simplex solver - serial
  Iteration        Objective     Infeasibilities num(sum)
          0    -1.9568483926e-04 Pr: 3(80.202) 0s
          9     2.3500585825e+04 Pr: 0(0) 0s
Solving the original LP from the solution after postsolve
Model   status      : Optimal
Simplex   iterations: 9
Objective value     :  2.3500585825e+04
HiGHS run time      :          0.00
Writing the solution to /tmp/linopy-solve-e0x_cb2m.sol
[3]:
('ok', 'optimal')
[4]:
pd.DataFrame({attr: network.stores_t[attr]["water tank"] for attr in ["p", "e"]})
[4]:
p e
snapshot
2016-01-01 00:00:00 20.000000 4.376710
2016-01-01 01:00:00 4.332943 -0.000000
2016-01-01 02:00:00 -13.423055 13.423055
2016-01-01 03:00:00 -11.334114 24.622939
[5]:
pd.DataFrame({attr: network.links_t[attr]["heat pump"] for attr in ["p0", "p1"]})
[5]:
p0 p1
snapshot
2016-01-01 00:00:00 -0.000000 0.000000
2016-01-01 01:00:00 5.222352 -15.667057
2016-01-01 02:00:00 10.444705 -33.423055
2016-01-01 03:00:00 10.444705 -31.334114
[6]:
network.stores.loc[["water tank"]].T
[6]:
Store water tank
attribute
bus 0 heat
type
carrier heat
e_nom 0.0
e_nom_mod 0.0
e_nom_extendable True
e_nom_min 0.0
e_nom_max inf
e_min_pu 0.0
e_max_pu 1.0
e_initial 0.0
e_initial_per_period False
e_cyclic True
e_cyclic_per_period True
p_set 0.0
q_set 0.0
sign 1.0
marginal_cost 0.0
marginal_cost_quadratic 0.0
marginal_cost_storage 0.0
capital_cost 0.0
standing_loss 0.01
build_year 0
lifetime inf
e_nom_opt 24.622939
[7]:
network.generators.loc[["wind turbine"]].T
[7]:
Generator wind turbine
attribute
bus 0
control PQ
type
p_nom 0.0
p_nom_mod 0.0
p_nom_extendable True
p_nom_min 0.0
p_nom_max inf
p_min_pu 0.0
p_max_pu 1.0
p_set 0.0
q_set 0.0
sign 1.0
carrier wind
marginal_cost 0.0
marginal_cost_quadratic 0.0
build_year 0
lifetime inf
capital_cost 500.0
efficiency 1.0
committable False
start_up_cost 0.0
shut_down_cost 0.0
stand_by_cost 0.0
min_up_time 0
min_down_time 0
up_time_before 1
down_time_before 0
ramp_limit_up NaN
ramp_limit_down NaN
ramp_limit_start_up 1.0
ramp_limit_shut_down 1.0
weight 1.0
p_nom_opt 26.111762